|
import datasets |
|
import streamlit as st |
|
import numpy as np |
|
import pandas as pd |
|
import altair as alt |
|
|
|
st.set_page_config(layout='wide') |
|
|
|
|
|
query_params = st.query_params |
|
if "gene_id_1" in query_params.keys(): |
|
gene_id_1 = query_params["gene_id_1"] |
|
else: |
|
gene_id_1 = "CNAG_04365" |
|
|
|
if "gene_id_2" in query_params.keys(): |
|
gene_id_2 = query_params["gene_id_2"] |
|
else: |
|
gene_id_2 = "CNAG_04222" |
|
|
|
|
|
|
|
|
|
st.markdown(""" |
|
# CryptoCEN Expression Scatter |
|
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies. |
|
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and |
|
is often a marker for genes to be involved in similar processes. |
|
|
|
To Cite: |
|
MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh, |
|
TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals |
|
novel proteins involved in DNA damage repair |
|
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN |
|
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN |
|
|
|
## Plot scatter plot expression for a pair of genes across studies. |
|
Put in the ``CNAG_#####`` gene_id for two genes. |
|
""") |
|
|
|
h99_transcript_annotations = datasets.load_dataset( |
|
path = "maomlab/CryptoCEN", |
|
data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"}) |
|
h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas() |
|
|
|
estimated_expression_meta = datasets.load_dataset( |
|
path = "maomlab/CryptoCEN", |
|
data_files = {"estimated_expression_meta": "Data/estimated_expression_meta.tsv"}) |
|
estimated_expression_meta = estimated_expression_meta["estimated_expression_meta"].to_pandas() |
|
|
|
estimated_expression = datasets.load_dataset( |
|
path = "maomlab/CryptoCEN", |
|
data_files = {"estimated_expression": "estimated_expression_matrix.parquet"}) |
|
estimated_expression = estimated_expression["estimated_expression"].to_pandas() |
|
|
|
|
|
print(f"estimated_expression shape: {estimated_expression.shape}") |
|
|
|
col1, col2, col3, padding = st.columns(spec = [0.2, 0.2, 0.2, 0.4]) |
|
with col1: |
|
gene_id_1 = st.text_input( |
|
label = "Gene ID 1", |
|
value = f"{gene_id_1}", |
|
max_chars = 10, |
|
help = "CNAG Gene ID e.g. CNAG_04365") |
|
|
|
with col2: |
|
gene_id_2 = st.text_input( |
|
label = "Gene ID 2", |
|
value = f"{gene_id_2}", |
|
max_chars = 10, |
|
help = "CNAG Gene ID e.g. CNAG_04222") |
|
|
|
|
|
try: |
|
cnag_id_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["cnag_id"].values[0] |
|
gene_symbol_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["gene_symbol"].values[0] |
|
description_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["description"].values[0] |
|
except: |
|
st.error(f"Unable to locate cnag_id for Gene ID 1: {gene_id_1}, it should be of the form 'CNAG_######'") |
|
|
|
try: |
|
cnag_id_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["cnag_id"].values[0] |
|
gene_symbol_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["gene_symbol"].values[0] |
|
description_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["description"].values[0] |
|
except: |
|
st.error(f"Unable to locate cnag_id for Gene ID 2: {gene_id_2}, it should be of the form 'CNAG_######'") |
|
|
|
chart_data = pd.DataFrame({ |
|
"gene_id_1": gene_id_1, |
|
"gene_id_2": gene_id_2, |
|
"expression_1": estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0], |
|
"expression_2": estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0] |
|
"log_expression_1": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0] + 1), |
|
"log_expression_2": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0] + 1), |
|
"run_accession": estimated_expression.columns}) |
|
chart_data = chart_data.merge( |
|
right = estimated_expression_meta, |
|
on = "run_accession") |
|
|
|
with col3: |
|
st.text('') |
|
st.download_button( |
|
label = "Download data as TSV", |
|
data = chart_data.to_csv(sep ='\t').encode('utf-8'), |
|
file_name = f"CryptoCEN_expression_{gene_id_1}_vs_{gene_id_2}.tsv", |
|
mime = "text/csv") |
|
|
|
|
|
st.markdown(f""" |
|
#### Gene 1: |
|
* *Gene ID*: [{gene_id_1}](https://fungidb.org/fungidb/app/record/gene/{gene_id_1}) |
|
{'* *Gene Symbol*:' + gene_symbol_1 if gene_symbol_1 is not None else ''} |
|
* *Description*: {description_1} |
|
* *Top [Co-Expressed Partners](https://huggingface.co/spaces/maomlab/CryptoCEN-TopHits?gene_id={gene_id_1})* |
|
|
|
#### Gene 2: |
|
* *Gene ID*: [{gene_id_2}](https://fungidb.org/fungidb/app/record/gene/{gene_id_2}) |
|
{'* *Gene Symbol*:' + gene_symbol_2 if gene_symbol_2 is not None else ''} |
|
* *Description*: {description_2} |
|
* *Top [Co-Expressed Partners](https://huggingface.co/spaces/maomlab/CryptoCEN-TopHits?gene_id={gene_id_2})* |
|
""") |
|
|
|
chart = ( |
|
alt.Chart( |
|
chart_data, |
|
width = 750, |
|
height = 750) |
|
.mark_circle() |
|
.encode( |
|
x=alt.X("log_expression_1", title=f"Log10[{gene_id_1}+1] Expression"), |
|
y=alt.Y("log_expression_2", title=f"Log10[{gene_id_2}+1] Expression"), |
|
color=alt.Color("study_accession", title="Study Accession"), |
|
tooltip=["run_accession", "study_accession"])) |
|
|
|
st.altair_chart( |
|
chart) |
|
|
|
|
|
|