maom's picture
add link to co-expressed partners for each target
1b46b26 verified
raw
history blame
5.7 kB
import datasets
import streamlit as st
import numpy as np
import pandas as pd
import altair as alt
st.set_page_config(layout='wide')
# parse out gene_ids from URL query args to it's possible to link to this page
query_params = st.query_params
if "gene_id_1" in query_params.keys():
gene_id_1 = query_params["gene_id_1"]
else:
gene_id_1 = "CNAG_04365"
if "gene_id_2" in query_params.keys():
gene_id_2 = query_params["gene_id_2"]
else:
gene_id_2 = "CNAG_04222"
st.markdown("""
# CryptoCEN Expression Scatter
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh,
TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals
novel proteins involved in DNA damage repair
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
## Plot scatter plot expression for a pair of genes across studies.
Put in the ``CNAG_#####`` gene_id for two genes.
""")
h99_transcript_annotations = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"})
h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas()
estimated_expression_meta = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"estimated_expression_meta": "Data/estimated_expression_meta.tsv"})
estimated_expression_meta = estimated_expression_meta["estimated_expression_meta"].to_pandas()
estimated_expression = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"estimated_expression": "estimated_expression_matrix.parquet"})
estimated_expression = estimated_expression["estimated_expression"].to_pandas()
#DEBUG
print(f"estimated_expression shape: {estimated_expression.shape}")
col1, col2, col3, padding = st.columns(spec = [0.2, 0.2, 0.2, 0.4])
with col1:
gene_id_1 = st.text_input(
label = "Gene ID 1",
value = f"{gene_id_1}",
max_chars = 10,
help = "CNAG Gene ID e.g. CNAG_04365")
with col2:
gene_id_2 = st.text_input(
label = "Gene ID 2",
value = f"{gene_id_2}",
max_chars = 10,
help = "CNAG Gene ID e.g. CNAG_04222")
# check the user input
try:
cnag_id_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["cnag_id"].values[0]
gene_symbol_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["gene_symbol"].values[0]
description_1 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_1]["description"].values[0]
except:
st.error(f"Unable to locate cnag_id for Gene ID 1: {gene_id_1}, it should be of the form 'CNAG_######'")
try:
cnag_id_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["cnag_id"].values[0]
gene_symbol_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["gene_symbol"].values[0]
description_2 = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id_2]["description"].values[0]
except:
st.error(f"Unable to locate cnag_id for Gene ID 2: {gene_id_2}, it should be of the form 'CNAG_######'")
chart_data = pd.DataFrame({
"gene_id_1": gene_id_1,
"gene_id_2": gene_id_2,
"expression_1": estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0],
"expression_2": estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0]
"log_expression_1": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0] + 1),
"log_expression_2": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0] + 1),
"run_accession": estimated_expression.columns})
chart_data = chart_data.merge(
right = estimated_expression_meta,
on = "run_accession")
with col3:
st.text('') # help alignment with input box
st.download_button(
label = "Download data as TSV",
data = chart_data.to_csv(sep ='\t').encode('utf-8'),
file_name = f"CryptoCEN_expression_{gene_id_1}_vs_{gene_id_2}.tsv",
mime = "text/csv")
st.markdown(f"""
#### Gene 1:
* *Gene ID*: [{gene_id_1}](https://fungidb.org/fungidb/app/record/gene/{gene_id_1})
{'* *Gene Symbol*:' + gene_symbol_1 if gene_symbol_1 is not None else ''}
* *Description*: {description_1}
* *Top [Co-Expressed Partners](https://huggingface.co/spaces/maomlab/CryptoCEN-TopHits?gene_id={gene_id_1})*
#### Gene 2:
* *Gene ID*: [{gene_id_2}](https://fungidb.org/fungidb/app/record/gene/{gene_id_2})
{'* *Gene Symbol*:' + gene_symbol_2 if gene_symbol_2 is not None else ''}
* *Description*: {description_2}
* *Top [Co-Expressed Partners](https://huggingface.co/spaces/maomlab/CryptoCEN-TopHits?gene_id={gene_id_2})*
""")
chart = (
alt.Chart(
chart_data,
width = 750,
height = 750)
.mark_circle()
.encode(
x=alt.X("log_expression_1", title=f"Log10[{gene_id_1}+1] Expression"),
y=alt.Y("log_expression_2", title=f"Log10[{gene_id_2}+1] Expression"),
color=alt.Color("study_accession", title="Study Accession"),
tooltip=["run_accession", "study_accession"]))
st.altair_chart(
chart)