Spaces:
Sleeping
Sleeping
initial chart
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import altair as alt
|
5 |
+
|
6 |
+
st.set_page_config(layout='wide')
|
7 |
+
|
8 |
+
st.markdown("""
|
9 |
+
# CryptoCEN Expression Scatter
|
10 |
+
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
|
11 |
+
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
|
12 |
+
is often a marker for genes to be involved in similar processes.
|
13 |
+
To Cite:
|
14 |
+
MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh,
|
15 |
+
TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals
|
16 |
+
novel proteins involved in DNA damage repair
|
17 |
+
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
|
18 |
+
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
|
19 |
+
|
20 |
+
## Look up top-coexpressed partners:
|
21 |
+
Put in the ``CNAG_#####`` gene_id for a gene and expand the table to get the top 50 co-expressed genes.
|
22 |
+
``coexp_score`` ranges between ``[0-1]``, where ``1`` is the best and greater than ``0.85`` can be considered significant.
|
23 |
+
""")
|
24 |
+
|
25 |
+
estimated_expression = datasets.load_dataset(
|
26 |
+
path = "maomlab/CryptoCEN",
|
27 |
+
data_files = {"estimated_expression": "estimated_expression.tsv"})
|
28 |
+
estimated_expression = estimated_expression["estimated_expression"].to_pandas()
|
29 |
+
|
30 |
+
estimated_expression_meta = datasets.load_dataset(
|
31 |
+
path = "maomlab/CryptoCEN/Data",
|
32 |
+
data_files = {"estimated_expression_meta": "estimated_expression_meta.tsv"})
|
33 |
+
estimated_expression_meta = estimated_expression_meta["estimated_expression_meta"].to_pandas()
|
34 |
+
|
35 |
+
col1, col2, col3 = st.columns(spec = [0.3, 0.2, 0.5])
|
36 |
+
with col1:
|
37 |
+
gene_id_1 = st.text_input(
|
38 |
+
label = "Gene ID 1",
|
39 |
+
value = "CNAG_04365",
|
40 |
+
max_chars = 10,
|
41 |
+
help = "CNAG Gene ID e.g. CNAG_04365")
|
42 |
+
|
43 |
+
with col2:
|
44 |
+
gene_id_2 = st.text_input(
|
45 |
+
label = "Gene ID 2",
|
46 |
+
value = "CNAG_04222",
|
47 |
+
max_chars = 10,
|
48 |
+
help = "CNAG Gene ID e.g. CNAG_04222")
|
49 |
+
|
50 |
+
chart_data = pd.DataFrame({
|
51 |
+
"expression_1": estimated_expression[estimated_expression.index == gene_id_1,],
|
52 |
+
"expression_2": estimated_expression[estimated_expression.index == gene_id_2,],
|
53 |
+
"run_accession": estimated_expression.columns,
|
54 |
+
"run_accession_meta": estimated_expression_meta["run_accession"],
|
55 |
+
"study_accession": estimated_expression_meta["study_accession"])
|
56 |
+
|
57 |
+
print(f"run_ids are equal: {sum(chart_data["run_accession"] == chart_data["run_accession_meta"])}")
|
58 |
+
|
59 |
+
chart = (
|
60 |
+
alt.Chart(chart_data)
|
61 |
+
.mark_circle()
|
62 |
+
.encode(x="expression_1", y="expression_2", size=5, color="study_accession", tooltip=["run_accession", "study_accession"]))
|
63 |
+
|
64 |
+
st.altair_chart(chart, use_container_width=True)
|
65 |
+
|
66 |
+
|