Spaces:
Sleeping
Sleeping
File size: 7,965 Bytes
d72ec4c 7166938 0266ad5 7166938 a8123aa d72ec4c 7166938 d72ec4c 7166938 b4e28c5 7166938 c224b96 7166938 b4e28c5 7166938 b32a5a4 7166938 bb2d184 7166938 754f25b 7166938 b4e28c5 7166938 fe0da66 95f9e48 3f4efec 7166938 b4e28c5 9c31df1 b4e28c5 7166938 b4e28c5 d5a2d2d 7166938 11a7804 f2018a5 7166938 11a7804 7166938 8c5d673 7166938 f0da168 7166938 11a7804 00b0789 eddfa89 11a7804 00b0789 eddfa89 11a7804 a8123aa 75500d1 b32a5a4 a8123aa 08e0af6 1dc19e6 08e0af6 a8123aa 6685cda 9610dbd a8123aa 965ee30 6685cda 1b2d6d6 6685cda 80eaa84 6685cda 08d5702 b092f6a 6685cda 965ee30 7166938 1b2d6d6 9610dbd 7166938 6685cda 1b2d6d6 11a7804 4845564 965ee30 7166938 1ac5d48 7166938 0266ad5 b32a5a4 fc1a145 b32a5a4 6ac4757 b32a5a4 9610dbd 1079e63 b32a5a4 1079e63 fc1a145 1079e63 0266ad5 7166938 965ee30 3067716 965ee30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import numpy as np
import pandas as pd
import datasets
import streamlit as st
from streamlit_cytoscapejs import st_cytoscapejs
import networkx as nx
st.set_page_config(layout='wide')
# parse out gene_ids from URL query args to it's possible to link to this page
query_params = st.query_params
if "gene_ids" in query_params.keys():
input_gene_ids = query_params["gene_ids"]
else:
input_gene_ids = "TGME49_231630,TGME49_230210"
# use "\n" as the separator so it shows correctly in the text area
input_gene_ids = input_gene_ids.replace(",", "\n")
if "coexp_score_threshold" in query_params.keys():
coexp_score_threshold = query_params["coexp_score_threshold"]
else:
coexp_score_threshold = "0.85"
if "max_per_gene" in query_params.keys():
max_per_gene = query_params["max_per_gene"]
else:
max_per_gene = "25"
st.markdown("""
# ToxoCEN Network
**ToxoCEN** is a co-expression network for *Toxoplasma gondii* built on 719 RNA-seq runs across 39 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
CS Arnold, Y Wang, VB Carruthers, MJ O'Meara
ToxoCEN: A Co-Expression Network for Toxoplasma gondii
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/ToxoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/ToxoCEN
## Plot a network for a set of genes
Put a ``TGME49_######`` gene_id, one each row to seed the network
""")
TGME49_transcript_annotations = datasets.load_dataset(
path = "maomlab/ToxoCEN",
data_files = {"TGME49_transcript_annotations": "TGME49_transcript_annotations.tsv"})
TGME49_transcript_annotations = TGME49_transcript_annotations["TGME49_transcript_annotations"].to_pandas()
top_coexp_hits = datasets.load_dataset(
path = "maomlab/ToxoCEN",
data_files = {"top_coexp_hits": "top_coexp_hits.tsv"})
top_coexp_hits = top_coexp_hits["top_coexp_hits"].to_pandas()
col1, col2, col3, padding = st.columns(spec = [0.2, 0.2, 0.2, 0.4])
with col1:
input_gene_ids = st.text_area(
label = "Gene IDs",
value = f"{input_gene_ids}",
height = 130,
help = "TGME49 Gene IDs e.g. TGME49_231630")
with col2:
coexp_score_threshold = st.text_input(
label = "Co-expression threshold [0-1]",
value = f"{coexp_score_threshold}",
help = "Default: 0.85")
try:
coexp_score_threshold = float(coexp_score_threshold)
except:
st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")
if coexp_score_threshold < 0 or 1 < coexp_score_threshold:
st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")
max_per_gene = st.text_input(
label = "Max per gene",
value = f"{max_per_gene}",
help = "Default: 25")
try:
max_per_gene = int(max_per_gene)
except:
st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
if max_per_gene <= 0:
st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
##################################
# Parse and check the user input #
##################################
seed_gene_ids = []
for input_gene_id in input_gene_ids.split("\n"):
gene_id = input_gene_id.strip()
if gene_id == "":
continue
else:
seed_gene_ids.append(gene_id)
neighbors = []
for seed_gene_id in seed_gene_ids:
hits = top_coexp_hits[
(top_coexp_hits.gene_id_1 == seed_gene_id) & (top_coexp_hits.coexp_score > coexp_score_threshold)]
if len(hits.index) > max_per_gene:
hits = hits[0:max_per_gene]
neighbors.append(hits)
neighbors = pd.concat(neighbors)
neighbor_gene_ids = list(set(neighbors.gene_id_2))
gene_ids = seed_gene_ids + neighbor_gene_ids
gene_types = ['seed'] * len(seed_gene_ids) + ['neighbor'] * len(neighbor_gene_ids)
TGME49_ids = []
gene_names = []
descriptions = []
for gene_id in gene_ids:
try:
TGME49_id = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["TGME49_id"].values[0]
gene_name = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["gene_name"].values[0]
description = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["description"].values[0]
except:
st.error(f"Unable to locate TGME49_id for Gene ID: {gene_id}, it should be of the form 'TGME49_######'")
TGME49_id = None
gene_name = None
description = None
TGME49_ids.append(TGME49_id)
gene_names.append(gene_name)
descriptions.append(description)
node_info = pd.DataFrame({
"gene_index": range(len(gene_ids)),
"gene_id" : gene_ids,
"gene_type" : gene_types,
"TGME49_id": TGME49_ids,
"gene_name": gene_names,
"description": descriptions})
neighbors = neighbors.merge(
right = node_info,
left_on = "gene_id_1",
right_on = "gene_id")
neighbors = neighbors.merge(
right = node_info,
left_on = "gene_id_2",
right_on = "gene_id",
suffixes = ("_a", "_b"))
################################
# Use NetworkX to layout graph #
################################
# note I think CytoscapeJS can layout graphs
# but I'm unsure how to do it through the streamlit-cytoscapejs interface :(
st.write(neighbors)
G = nx.Graph()
for i in range(len(neighbors.index)):
edge = neighbors.iloc[i]
G.add_edge(
edge["gene_index_a"],
edge["gene_index_b"],
weight = edge["coexp_score"])
layout = nx.spring_layout(G)
node_color_lut = {
"seed" : "#4866F0", # blue
"neighbor" : "#F0C547" # gold
}
elements = []
singleton_index = 0
for i in range(len(node_info.index)):
node = node_info.iloc[i]
if node["gene_index"] in layout.keys():
layout_x = layout[node["gene_index"]][0] * 600 + 1500/2
layout_y = layout[node["gene_index"]][1] * 600 + 1500/2
else:
layout_x = (singleton_index % 8) * 150 + 100
layout_y = np.floor(singleton_index / 8) * 50 + 30
singleton_index += 1
elements.append({
"data": {
"id": node["gene_id"],
"label": node["gene_name"] if node["gene_name"] is not None else node["gene_id"],
"color": node_color_lut[node["gene_type"]]},
"position": {
"x" : layout_x,
"y" : layout_y}})
for i in range(len(neighbors.index)):
edge = neighbors.iloc[i]
elements.append({
"data" : {
"source" : edge["gene_id_1"],
"target" : edge["gene_id_2"],
"width" :
20 if edge["coexp_score"] > 0.98 else
15 if edge["coexp_score"] > 0.93 else
10 if edge["coexp_score"] > 0.90 else
8 if edge["coexp_score"] > 0.88 else
5}})
with col3:
st.text('') # help alignment with input box
st.download_button(
label = "Download as as TSV",
data = neighbors.to_csv(sep ='\t').encode('utf-8'),
file_name = f"ToxoCEN_network.tsv",
mime = "text/csv")
##########################################################
stylesheet = [
{"selector": "node", "style": {
"width": 140,
"height": 30,
"shape": "rectangle",
"label" : "data(label)",
"labelFontSize": 100,
'background-color': 'data(color)',
"text-halign": "center",
"text-valign": "center",
}},
{"selector": "edge", "style": {
"width": "data(width)"
}}
]
st.title("ToxoCEN Network")
clicked_elements = st_cytoscapejs(
elements = elements,
stylesheet = stylesheet,
width = 1000,
height= 1000,
key = "1")
|