|
|
|
|
|
|
|
|
|
|
|
from enum import Enum |
|
from typing import Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .backbones import _make_dinov2_model |
|
from .utils import _DINOV2_BASE_URL, _make_dinov2_model_name |
|
|
|
|
|
class Weights(Enum): |
|
IMAGENET1K = "IMAGENET1K" |
|
|
|
|
|
def _make_dinov2_linear_classification_head( |
|
*, |
|
arch_name: str = "vit_large", |
|
patch_size: int = 14, |
|
embed_dim: int = 1024, |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
num_register_tokens: int = 0, |
|
**kwargs, |
|
): |
|
if layers not in (1, 4): |
|
raise AssertionError(f"Unsupported number of layers: {layers}") |
|
if isinstance(weights, str): |
|
try: |
|
weights = Weights[weights] |
|
except KeyError: |
|
raise AssertionError(f"Unsupported weights: {weights}") |
|
|
|
linear_head = nn.Linear((1 + layers) * embed_dim, 1_000) |
|
|
|
if pretrained: |
|
model_base_name = _make_dinov2_model_name(arch_name, patch_size) |
|
model_full_name = _make_dinov2_model_name(arch_name, patch_size, num_register_tokens) |
|
layers_str = str(layers) if layers == 4 else "" |
|
url = _DINOV2_BASE_URL + f"/{model_base_name}/{model_full_name}_linear{layers_str}_head.pth" |
|
state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") |
|
linear_head.load_state_dict(state_dict, strict=True) |
|
|
|
return linear_head |
|
|
|
|
|
class _LinearClassifierWrapper(nn.Module): |
|
def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4): |
|
super().__init__() |
|
self.backbone = backbone |
|
self.linear_head = linear_head |
|
self.layers = layers |
|
|
|
def forward(self, x): |
|
if self.layers == 1: |
|
x = self.backbone.forward_features(x) |
|
cls_token = x["x_norm_clstoken"] |
|
patch_tokens = x["x_norm_patchtokens"] |
|
|
|
linear_input = torch.cat([ |
|
cls_token, |
|
patch_tokens.mean(dim=1), |
|
], dim=1) |
|
|
|
elif self.layers == 4: |
|
x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True) |
|
|
|
linear_input = torch.cat([ |
|
x[0][1], |
|
x[1][1], |
|
x[2][1], |
|
x[3][1], |
|
x[3][0].mean(dim=1), |
|
], dim=1) |
|
|
|
else: |
|
assert False, f"Unsupported number of layers: {self.layers}" |
|
return self.linear_head(linear_input) |
|
|
|
|
|
def _make_dinov2_linear_classifier( |
|
*, |
|
arch_name: str = "vit_large", |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
num_register_tokens: int = 0, |
|
interpolate_antialias: bool = False, |
|
interpolate_offset: float = 0.1, |
|
**kwargs, |
|
): |
|
backbone = _make_dinov2_model( |
|
arch_name=arch_name, |
|
pretrained=pretrained, |
|
num_register_tokens=num_register_tokens, |
|
interpolate_antialias=interpolate_antialias, |
|
interpolate_offset=interpolate_offset, |
|
**kwargs, |
|
) |
|
|
|
embed_dim = backbone.embed_dim |
|
patch_size = backbone.patch_size |
|
linear_head = _make_dinov2_linear_classification_head( |
|
arch_name=arch_name, |
|
patch_size=patch_size, |
|
embed_dim=embed_dim, |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=num_register_tokens, |
|
) |
|
|
|
return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers) |
|
|
|
|
|
def dinov2_vits14_lc( |
|
*, |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
**kwargs, |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_small", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitb14_lc( |
|
*, |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
**kwargs, |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_base", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitl14_lc( |
|
*, |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
**kwargs, |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_large", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitg14_lc( |
|
*, |
|
layers: int = 4, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.IMAGENET1K, |
|
**kwargs, |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_giant2", |
|
layers=layers, |
|
ffn_layer="swiglufused", |
|
pretrained=pretrained, |
|
weights=weights, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vits14_reg_lc( |
|
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_small", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitb14_reg_lc( |
|
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_base", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitl14_reg_lc( |
|
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_large", |
|
layers=layers, |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitg14_reg_lc( |
|
*, layers: int = 4, pretrained: bool = True, weights: Union[Weights, str] = Weights.IMAGENET1K, **kwargs |
|
): |
|
""" |
|
Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone with registers (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. |
|
""" |
|
return _make_dinov2_linear_classifier( |
|
arch_name="vit_giant2", |
|
layers=layers, |
|
ffn_layer="swiglufused", |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |