|
|
|
|
|
|
|
from typing import List, Tuple |
|
|
|
import cv2 |
|
import numpy as np |
|
from opensfm import features |
|
from opensfm.pygeometry import Camera, compute_camera_mapping, Pose |
|
from opensfm.pymap import Shot |
|
from scipy.spatial.transform import Rotation |
|
|
|
|
|
def keyframe_selection(shots: List[Shot], min_dist: float = 4) -> List[int]: |
|
camera_centers = np.stack([shot.pose.get_origin() for shot in shots], 0) |
|
distances = np.linalg.norm(np.diff(camera_centers, axis=0), axis=1) |
|
selected = [0] |
|
cum = 0 |
|
for i in range(1, len(camera_centers)): |
|
cum += distances[i - 1] |
|
if cum >= min_dist: |
|
selected.append(i) |
|
cum = 0 |
|
return selected |
|
|
|
|
|
def perspective_camera_from_pano(camera: Camera, size: int) -> Camera: |
|
camera_new = Camera.create_perspective(0.5, 0, 0) |
|
camera_new.height = camera_new.width = size |
|
camera_new.id = "perspective_from_pano" |
|
return camera_new |
|
|
|
|
|
def scale_camera(camera: Camera, max_size: int) -> Camera: |
|
height = camera.height |
|
width = camera.width |
|
factor = max_size / float(max(height, width)) |
|
if factor >= 1: |
|
return camera |
|
camera.width = int(round(width * factor)) |
|
camera.height = int(round(height * factor)) |
|
return camera |
|
|
|
|
|
class PanoramaUndistorter: |
|
def __init__(self, camera_pano: Camera, camera_new: Camera): |
|
w, h = camera_new.width, camera_new.height |
|
self.shape = (h, w) |
|
|
|
dst_y, dst_x = np.indices(self.shape).astype(np.float32) |
|
dst_pixels_denormalized = np.column_stack([dst_x.ravel(), dst_y.ravel()]) |
|
dst_pixels = features.normalized_image_coordinates( |
|
dst_pixels_denormalized, w, h |
|
) |
|
self.dst_bearings = camera_new.pixel_bearing_many(dst_pixels) |
|
|
|
self.camera_pano = camera_pano |
|
self.camera_perspective = camera_new |
|
|
|
def __call__( |
|
self, image: np.ndarray, panoshot: Shot, perspectiveshot: Shot |
|
) -> np.ndarray: |
|
|
|
rotation = np.dot( |
|
panoshot.pose.get_rotation_matrix(), |
|
perspectiveshot.pose.get_rotation_matrix().T, |
|
) |
|
rotated_bearings = np.dot(self.dst_bearings, rotation.T) |
|
|
|
|
|
src_pixels = panoshot.camera.project_many(rotated_bearings) |
|
src_pixels_denormalized = features.denormalized_image_coordinates( |
|
src_pixels, image.shape[1], image.shape[0] |
|
) |
|
src_pixels_denormalized.shape = self.shape + (2,) |
|
|
|
|
|
x = src_pixels_denormalized[..., 0].astype(np.float32) |
|
y = src_pixels_denormalized[..., 1].astype(np.float32) |
|
colors = cv2.remap(image, x, y, cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP) |
|
return colors |
|
|
|
|
|
class CameraUndistorter: |
|
def __init__(self, camera_distorted: Camera, camera_new: Camera): |
|
self.maps = compute_camera_mapping( |
|
camera_distorted, |
|
camera_new, |
|
camera_distorted.width, |
|
camera_distorted.height, |
|
) |
|
self.camera_perspective = camera_new |
|
self.camera_distorted = camera_distorted |
|
|
|
def __call__(self, image: np.ndarray) -> np.ndarray: |
|
assert image.shape[:2] == ( |
|
self.camera_distorted.height, |
|
self.camera_distorted.width, |
|
) |
|
undistorted = cv2.remap(image, *self.maps, cv2.INTER_LINEAR) |
|
resized = cv2.resize( |
|
undistorted, |
|
(self.camera_perspective.width, self.camera_perspective.height), |
|
interpolation=cv2.INTER_AREA, |
|
) |
|
return resized |
|
|
|
|
|
def render_panorama( |
|
shot: Shot, |
|
pano: np.ndarray, |
|
undistorter: PanoramaUndistorter, |
|
offset: float = 0.0, |
|
) -> Tuple[List[Shot], List[np.ndarray]]: |
|
yaws = [0, 90, 180, 270] |
|
suffixes = ["front", "left", "back", "right"] |
|
images = [] |
|
shots = [] |
|
|
|
|
|
|
|
h, w = undistorter.shape |
|
h, w = (w * 2, w * 4) |
|
pano_resized = cv2.resize(pano, (w, h), interpolation=cv2.INTER_AREA) |
|
|
|
for yaw, suffix in zip(yaws, suffixes): |
|
R_pano2persp = Rotation.from_euler("Y", yaw + offset, degrees=True).as_matrix() |
|
name = f"{shot.id}_{suffix}" |
|
shot_new = Shot( |
|
name, |
|
undistorter.camera_perspective, |
|
Pose.compose(Pose(R_pano2persp), shot.pose), |
|
) |
|
shot_new.metadata = shot.metadata |
|
perspective = undistorter(pano_resized, shot, shot_new) |
|
images.append(perspective) |
|
shots.append(shot_new) |
|
return shots, images |
|
|
|
|
|
def undistort_camera( |
|
shot: Shot, image: np.ndarray, undistorter: CameraUndistorter |
|
) -> Tuple[Shot, np.ndarray]: |
|
name = f"{shot.id}_undistorted" |
|
shot_out = Shot(name, undistorter.camera_perspective, shot.pose) |
|
shot_out.metadata = shot.metadata |
|
undistorted = undistorter(image) |
|
return shot_out, undistorted |
|
|
|
|
|
def undistort_shot( |
|
image_raw: np.ndarray, |
|
shot_orig: Shot, |
|
undistorter, |
|
pano_offset: float, |
|
) -> Tuple[List[Shot], List[np.ndarray]]: |
|
camera = shot_orig.camera |
|
if image_raw.shape[:2] != (camera.height, camera.width): |
|
raise ValueError( |
|
shot_orig.id, image_raw.shape[:2], (camera.height, camera.width) |
|
) |
|
if camera.is_panorama(camera.projection_type): |
|
shots, undistorted = render_panorama( |
|
shot_orig, image_raw, undistorter, offset=pano_offset |
|
) |
|
elif camera.projection_type in ("perspective", "fisheye"): |
|
shot, undistorted = undistort_camera(shot_orig, image_raw, undistorter) |
|
shots, undistorted = [shot], [undistorted] |
|
else: |
|
raise NotImplementedError(camera.projection_type) |
|
return shots, undistorted |