Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
import torch | |
from torch.nn.functional import grid_sample | |
from ..utils.geometry import from_homogeneous | |
from .utils import make_grid | |
class PolarProjectionDepth(torch.nn.Module): | |
def __init__(self, z_max, ppm, scale_range, z_min=None): | |
super().__init__() | |
self.z_max = z_max | |
self.Δ = Δ = 1 / ppm | |
self.z_min = z_min = Δ if z_min is None else z_min | |
self.scale_range = scale_range | |
z_steps = torch.arange(z_min, z_max + Δ, Δ) | |
self.register_buffer("depth_steps", z_steps, persistent=False) | |
def sample_depth_scores(self, pixel_scales, camera): | |
scale_steps = camera.f[..., None, 1] / self.depth_steps.flip(-1) | |
log_scale_steps = torch.log2(scale_steps) | |
scale_min, scale_max = self.scale_range | |
log_scale_norm = (log_scale_steps - scale_min) / \ | |
(scale_max - scale_min) | |
log_scale_norm = log_scale_norm * 2 - 1 # in [-1, 1] | |
values = pixel_scales.flatten(1, 2).unsqueeze(-1) | |
indices = log_scale_norm.unsqueeze(-1) | |
indices = torch.stack([torch.zeros_like(indices), indices], -1) | |
depth_scores = grid_sample(values, indices, align_corners=True) | |
depth_scores = depth_scores.reshape( | |
pixel_scales.shape[:-1] + (len(self.depth_steps),) | |
) | |
return depth_scores | |
def forward( | |
self, | |
image, | |
pixel_scales, | |
camera, | |
return_total_score=False, | |
): | |
depth_scores = self.sample_depth_scores(pixel_scales, camera) | |
depth_prob = torch.softmax(depth_scores, dim=1) | |
image_polar = torch.einsum("...dhw,...hwz->...dzw", image, depth_prob) | |
if return_total_score: | |
cell_score = torch.logsumexp(depth_scores, dim=1, keepdim=True) | |
return image_polar, cell_score.squeeze(1) | |
return image_polar | |
class CartesianProjection(torch.nn.Module): | |
def __init__(self, z_max, x_max, ppm, z_min=None): | |
super().__init__() | |
self.z_max = z_max | |
self.x_max = x_max | |
self.Δ = Δ = 1 / ppm | |
self.z_min = z_min = Δ if z_min is None else z_min | |
grid_xz = make_grid( | |
x_max * 2 + Δ, z_max, step_y=Δ, step_x=Δ, orig_y=Δ, orig_x=-x_max, y_up=True | |
) | |
self.register_buffer("grid_xz", grid_xz, persistent=False) | |
def grid_to_polar(self, cam): | |
f, c = cam.f[..., 0][..., None, None], cam.c[..., 0][..., None, None] | |
u = from_homogeneous(self.grid_xz).squeeze(-1) * f + c | |
z_idx = (self.grid_xz[..., 1] - self.z_min) / \ | |
self.Δ # convert z value to index | |
z_idx = z_idx[None].expand_as(u) | |
grid_polar = torch.stack([u, z_idx], -1) | |
return grid_polar | |
def sample_from_polar(self, image_polar, valid_polar, grid_uz): | |
size = grid_uz.new_tensor(image_polar.shape[-2:][::-1]) | |
grid_uz_norm = (grid_uz + 0.5) / size * 2 - 1 | |
grid_uz_norm = grid_uz_norm * \ | |
grid_uz.new_tensor([1, -1]) # y axis is up | |
image_bev = grid_sample(image_polar, grid_uz_norm, align_corners=False) | |
if valid_polar is None: | |
valid = torch.ones_like(image_polar[..., :1, :, :]) | |
else: | |
valid = valid_polar.to(image_polar)[:, None] | |
valid = grid_sample(valid, grid_uz_norm, align_corners=False) | |
valid = valid.squeeze(1) > (1 - 1e-4) | |
return image_bev, valid | |
def forward(self, image_polar, valid_polar, cam): | |
grid_uz = self.grid_to_polar(cam) | |
image, valid = self.sample_from_polar( | |
image_polar, valid_polar, grid_uz) | |
return image, valid, grid_uz | |