Spaces:
Running
Running
from .base import BaseModel | |
from .schema import DINOConfiguration | |
import logging | |
import torch | |
import torch.nn as nn | |
import sys | |
import re | |
import os | |
from .dinov2.eval.depth.ops.wrappers import resize | |
from .dinov2.hub.backbones import dinov2_vitb14_reg | |
module_dir = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(module_dir) | |
logger = logging.getLogger(__name__) | |
class FeatureExtractor(BaseModel): | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
def build_encoder(self, conf: DINOConfiguration): | |
BACKBONE_SIZE = "small" | |
backbone_archs = { | |
"small": "vits14", | |
"base": "vitb14", # this one | |
"large": "vitl14", | |
"giant": "vitg14", | |
} | |
backbone_arch = backbone_archs[BACKBONE_SIZE] | |
self.crop_size = int(re.search(r"\d+", backbone_arch).group()) | |
backbone_name = f"dinov2_{backbone_arch}" | |
self.backbone_model = dinov2_vitb14_reg( | |
pretrained=conf.pretrained, drop_path_rate=0.1) | |
if conf.frozen: | |
for param in self.backbone_model.patch_embed.parameters(): | |
param.requires_grad = False | |
for i in range(0, 10): | |
for param in self.backbone_model.blocks[i].parameters(): | |
param.requires_grad = False | |
self.backbone_model.blocks[i].drop_path1 = nn.Identity() | |
self.backbone_model.blocks[i].drop_path2 = nn.Identity() | |
self.feat_projection = torch.nn.Conv2d( | |
768, conf.output_dim, kernel_size=1) | |
return self.backbone_model | |
def _init(self, conf: DINOConfiguration): | |
# Preprocessing | |
self.register_buffer("mean_", torch.tensor( | |
self.mean), persistent=False) | |
self.register_buffer("std_", torch.tensor(self.std), persistent=False) | |
self.build_encoder(conf) | |
def _forward(self, data): | |
_, _, h, w = data["image"].shape | |
h_num_patches = h // self.crop_size | |
w_num_patches = w // self.crop_size | |
h_dino = h_num_patches * self.crop_size | |
w_dino = w_num_patches * self.crop_size | |
image = resize(data["image"], (h_dino, w_dino)) | |
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None] | |
output = self.backbone_model.forward_features( | |
image)['x_norm_patchtokens'] | |
output = output.reshape(-1, h_num_patches, | |
w_num_patches, output.shape[-1]) | |
output = output.permute(0, 3, 1, 2) # channel first | |
output = self.feat_projection(output) | |
camera = data['camera'].to(data["image"].device, non_blocking=True) | |
camera = camera.scale(output.shape[-1] / data["image"].shape[-1]) | |
return output, camera | |