Spaces:
Running
Running
Update metric.py
Browse files
metric.py
CHANGED
@@ -1,9 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import json
|
3 |
import evaluate
|
4 |
import datasets
|
5 |
-
from typing import Set, Tuple, List, Dict, Any
|
6 |
-
from dataclasses import dataclass
|
7 |
|
8 |
_DESCRIPTION = """
|
9 |
Table evaluation metrics for assessing the matching degree between predicted and reference tables. It calculates the following metrics:
|
@@ -42,23 +238,21 @@ Examples:
|
|
42 |
|
43 |
|
44 |
_CITATION = """
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
"""
|
47 |
|
48 |
|
49 |
-
|
50 |
-
class TableCell:
|
51 |
-
labels: frozenset[str] # Using frozenset for hashable unordered pair
|
52 |
-
value: float
|
53 |
-
|
54 |
-
def __eq__(self, other):
|
55 |
-
if not isinstance(other, TableCell):
|
56 |
-
return False
|
57 |
-
return self.labels == other.labels and abs(self.value - other.value) < 0.05
|
58 |
-
|
59 |
-
def __hash__(self):
|
60 |
-
return hash((self.labels, round(self.value, 3))) # Round to handle float comparison
|
61 |
-
|
62 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
63 |
class Accuracy(evaluate.Metric):
|
64 |
def _info(self):
|
@@ -85,66 +279,67 @@ class Accuracy(evaluate.Metric):
|
|
85 |
|
86 |
return None
|
87 |
|
88 |
-
def
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
table_str = table_str.lstrip("|").rstrip("|")
|
93 |
parts = table_str.split('||')
|
94 |
parts = [part for part in parts if "--" not in part]
|
95 |
-
|
96 |
-
if not parts:
|
97 |
-
return result_set
|
98 |
-
|
99 |
legends = parts[0].split("|")
|
100 |
-
legends = [l.strip() for l in legends if l.strip()]
|
101 |
|
102 |
rows = len(parts)
|
103 |
-
if rows == 2:
|
104 |
nums = parts[1].split("|")
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
row = [r.strip() for r in row if r.strip()]
|
118 |
-
if not row:
|
119 |
-
continue
|
120 |
-
|
121 |
-
row_label = row[0]
|
122 |
-
for j, num in enumerate(row[1:], 1):
|
123 |
-
if j >= len(legends):
|
124 |
-
continue
|
125 |
-
try:
|
126 |
-
value = float(num)
|
127 |
-
# For multi-row tables, use label pairs
|
128 |
-
cell = TableCell(frozenset([row_label, legends[j-1]]), value)
|
129 |
-
result_set.add(cell)
|
130 |
-
except ValueError:
|
131 |
-
continue
|
132 |
|
133 |
-
return
|
134 |
-
|
135 |
-
def _markdown_to_cell_set(self, markdown_str: str) -> Set[TableCell]:
|
136 |
-
"""Convert markdown string to a set of TableCell objects."""
|
137 |
table_str = self._extract_markdown_table(markdown_str)
|
138 |
if table_str:
|
139 |
-
return self.
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
149 |
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
150 |
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
@@ -161,39 +356,26 @@ class Accuracy(evaluate.Metric):
|
|
161 |
def _compute(self, predictions, references):
|
162 |
predictions = "".join(predictions)
|
163 |
references = "".join(references)
|
164 |
-
|
165 |
-
true_cells = self._markdown_to_cell_set(references)
|
166 |
-
return self._calculate_table_metrics(pred_cells, true_cells)
|
167 |
|
168 |
|
169 |
def main():
|
170 |
accuracy_metric = Accuracy()
|
171 |
|
172 |
-
#
|
173 |
-
|
174 |
-
results1 = accuracy_metric.compute(
|
175 |
-
predictions=["""
|
176 |
-
| | value1 | value2 | value3 ||--|--|--|--|| data | 1.01 | 2 | 3 |
|
177 |
-
"""],
|
178 |
-
references=["""
|
179 |
-
| | value1 | value2 | value3 ||--|--|--|--|| data | 1 | 2 | 3 |
|
180 |
-
"""],
|
181 |
-
)
|
182 |
-
print("Single row table test:", results1)
|
183 |
-
|
184 |
-
# Test 2: Multi-row table (transposed)
|
185 |
-
results2 = accuracy_metric.compute(
|
186 |
predictions=["""
|
187 |
-
| |
|
188 |
-
"""],
|
189 |
references=["""
|
190 |
-
| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire |
|
191 |
-
"""],
|
192 |
)
|
193 |
-
print(
|
194 |
|
195 |
if __name__ == '__main__':
|
196 |
main()
|
197 |
|
198 |
|
199 |
|
|
|
|
1 |
+
# import re
|
2 |
+
# import json
|
3 |
+
# import evaluate
|
4 |
+
# import datasets
|
5 |
+
# from typing import Set, Tuple, List, Dict, Any
|
6 |
+
# from dataclasses import dataclass
|
7 |
+
|
8 |
+
# _DESCRIPTION = """
|
9 |
+
# Table evaluation metrics for assessing the matching degree between predicted and reference tables. It calculates the following metrics:
|
10 |
+
|
11 |
+
# 1. Precision: The ratio of correctly predicted cells to the total number of cells in the predicted table
|
12 |
+
# 2. Recall: The ratio of correctly predicted cells to the total number of cells in the reference table
|
13 |
+
# 3. F1 Score: The harmonic mean of precision and recall
|
14 |
+
|
15 |
+
# These metrics help evaluate the accuracy of table data extraction or generation.
|
16 |
+
# """
|
17 |
+
|
18 |
+
|
19 |
+
# _KWARGS_DESCRIPTION = """
|
20 |
+
# Args:
|
21 |
+
# predictions (`str`): Predicted table in Markdown format.
|
22 |
+
# references (`str`): Reference table in Markdown format.
|
23 |
+
|
24 |
+
# Returns:
|
25 |
+
# dict: A dictionary containing the following metrics:
|
26 |
+
# - precision (`float`): Precision score, range [0,1]
|
27 |
+
# - recall (`float`): Recall score, range [0,1]
|
28 |
+
# - f1 (`float`): F1 score, range [0,1]
|
29 |
+
# - true_positives (`int`): Number of correctly predicted cells
|
30 |
+
# - false_positives (`int`): Number of incorrectly predicted cells
|
31 |
+
# - false_negatives (`int`): Number of cells that were not predicted
|
32 |
+
|
33 |
+
# Examples:
|
34 |
+
# >>> accuracy_metric = evaluate.load("accuracy")
|
35 |
+
# >>> results = accuracy_metric.compute(
|
36 |
+
# ... predictions="| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 5 | 8 | 7 | 5 | 9 || wage | 1 | 5 | 3 | 8 | 5 |",
|
37 |
+
# ... references="| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 1 | 6 | 7 | 5 | 9 || wage | 1 | 5 | 2 | 8 | 5 |"
|
38 |
+
# ... )
|
39 |
+
# >>> print(results)
|
40 |
+
# {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'true_positives': 7, 'false_positives': 3, 'false_negatives': 3}
|
41 |
+
# """
|
42 |
+
|
43 |
+
|
44 |
+
# _CITATION = """
|
45 |
+
|
46 |
+
# """
|
47 |
+
|
48 |
+
|
49 |
+
# @dataclass(frozen=True)
|
50 |
+
# class TableCell:
|
51 |
+
# labels: frozenset[str] # Using frozenset for hashable unordered pair
|
52 |
+
# value: float
|
53 |
+
|
54 |
+
# def __eq__(self, other):
|
55 |
+
# if not isinstance(other, TableCell):
|
56 |
+
# return False
|
57 |
+
# return self.labels == other.labels and abs(self.value - other.value) < 0.05
|
58 |
+
|
59 |
+
# def __hash__(self):
|
60 |
+
# return hash((self.labels, round(self.value, 3))) # Round to handle float comparison
|
61 |
+
|
62 |
+
# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
63 |
+
# class Accuracy(evaluate.Metric):
|
64 |
+
# def _info(self):
|
65 |
+
# return evaluate.MetricInfo(
|
66 |
+
# description=_DESCRIPTION,
|
67 |
+
# citation=_CITATION,
|
68 |
+
# inputs_description=_KWARGS_DESCRIPTION,
|
69 |
+
# features=datasets.Features(
|
70 |
+
# {
|
71 |
+
# "predictions": datasets.Value("string"),
|
72 |
+
# "references": datasets.Value("string"),
|
73 |
+
# }
|
74 |
+
# ),
|
75 |
+
# reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"],
|
76 |
+
# )
|
77 |
+
# def _extract_markdown_table(self,text):
|
78 |
+
# text = text.replace('\n', '')
|
79 |
+
# text = text.replace(" ","")
|
80 |
+
# pattern = r'\|(?:[^|]+\|)+[^|]+\|'
|
81 |
+
# matches = re.findall(pattern, text)
|
82 |
+
|
83 |
+
# if matches:
|
84 |
+
# return ''.join(matches)
|
85 |
+
|
86 |
+
# return None
|
87 |
+
|
88 |
+
# def _table_to_cell_set(self, table_str: str) -> Set[TableCell]:
|
89 |
+
# """Convert markdown table string to a set of TableCell objects."""
|
90 |
+
# result_set = set()
|
91 |
+
|
92 |
+
# table_str = table_str.lstrip("|").rstrip("|")
|
93 |
+
# parts = table_str.split('||')
|
94 |
+
# parts = [part for part in parts if "--" not in part]
|
95 |
+
|
96 |
+
# if not parts:
|
97 |
+
# return result_set
|
98 |
+
|
99 |
+
# legends = parts[0].split("|")
|
100 |
+
# legends = [l.strip() for l in legends if l.strip()]
|
101 |
+
|
102 |
+
# rows = len(parts)
|
103 |
+
# if rows == 2: # Single row table - use single label
|
104 |
+
# nums = parts[1].split("|")
|
105 |
+
# nums = [n.strip() for n in nums if n.strip()]
|
106 |
+
# for i, num in enumerate(nums):
|
107 |
+
# try:
|
108 |
+
# value = float(num)
|
109 |
+
# # For single row tables, use a single label
|
110 |
+
# cell = TableCell(frozenset([legends[i]]), value)
|
111 |
+
# result_set.add(cell)
|
112 |
+
# except ValueError:
|
113 |
+
# continue
|
114 |
+
# elif rows >= 3: # Multi-row table - use label pairs
|
115 |
+
# for i in range(1, rows):
|
116 |
+
# row = parts[i].split("|")
|
117 |
+
# row = [r.strip() for r in row if r.strip()]
|
118 |
+
# if not row:
|
119 |
+
# continue
|
120 |
+
|
121 |
+
# row_label = row[0]
|
122 |
+
# for j, num in enumerate(row[1:], 1):
|
123 |
+
# if j >= len(legends):
|
124 |
+
# continue
|
125 |
+
# try:
|
126 |
+
# value = float(num)
|
127 |
+
# # For multi-row tables, use label pairs
|
128 |
+
# cell = TableCell(frozenset([row_label, legends[j-1]]), value)
|
129 |
+
# result_set.add(cell)
|
130 |
+
# except ValueError:
|
131 |
+
# continue
|
132 |
+
|
133 |
+
# return result_set
|
134 |
+
|
135 |
+
# def _markdown_to_cell_set(self, markdown_str: str) -> Set[TableCell]:
|
136 |
+
# """Convert markdown string to a set of TableCell objects."""
|
137 |
+
# table_str = self._extract_markdown_table(markdown_str)
|
138 |
+
# if table_str:
|
139 |
+
# return self._table_to_cell_set(table_str)
|
140 |
+
# return set()
|
141 |
+
|
142 |
+
# def _calculate_table_metrics(self, pred_cells: Set[TableCell], true_cells: Set[TableCell]) -> Dict[str, Any]:
|
143 |
+
# """Calculate metrics using cell set comparison."""
|
144 |
+
# true_positives = len(pred_cells.intersection(true_cells))
|
145 |
+
# false_positives = len(pred_cells - true_cells)
|
146 |
+
# false_negatives = len(true_cells - pred_cells)
|
147 |
+
|
148 |
+
# precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
149 |
+
# recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
150 |
+
# f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
151 |
+
|
152 |
+
# return {
|
153 |
+
# 'precision': precision,
|
154 |
+
# 'recall': recall,
|
155 |
+
# 'f1': f1,
|
156 |
+
# 'true_positives': true_positives,
|
157 |
+
# 'false_positives': false_positives,
|
158 |
+
# 'false_negatives': false_negatives
|
159 |
+
# }
|
160 |
+
|
161 |
+
# def _compute(self, predictions, references):
|
162 |
+
# predictions = "".join(predictions)
|
163 |
+
# references = "".join(references)
|
164 |
+
# pred_cells = self._markdown_to_cell_set(predictions)
|
165 |
+
# true_cells = self._markdown_to_cell_set(references)
|
166 |
+
# return self._calculate_table_metrics(pred_cells, true_cells)
|
167 |
+
|
168 |
+
|
169 |
+
# def main():
|
170 |
+
# accuracy_metric = Accuracy()
|
171 |
+
|
172 |
+
# # Test with different table formats
|
173 |
+
# # Test 1: Single row table
|
174 |
+
# results1 = accuracy_metric.compute(
|
175 |
+
# predictions=["""
|
176 |
+
# | | value1 | value2 | value3 ||--|--|--|--|| data | 1.01 | 2 | 3 |
|
177 |
+
# """],
|
178 |
+
# references=["""
|
179 |
+
# | | value1 | value2 | value3 ||--|--|--|--|| data | 1 | 2 | 3 |
|
180 |
+
# """],
|
181 |
+
# )
|
182 |
+
# print("Single row table test:", results1)
|
183 |
+
|
184 |
+
# # Test 2: Multi-row table (transposed)
|
185 |
+
# results2 = accuracy_metric.compute(
|
186 |
+
# predictions=["""
|
187 |
+
# | | desire | wage ||--|--|--|| lobby | 5.01 | 1 || search | 8 | 5 || band | 7 | 3 || charge | 5 | 8 || chain | 9 | 5 |
|
188 |
+
# """],
|
189 |
+
# references=["""
|
190 |
+
# | | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 5.01 | 8 | 7 | 5 | 9 || wage | 1 | 5 | 3 | 8 | 5 |
|
191 |
+
# """],
|
192 |
+
# )
|
193 |
+
# print("Multi-row table test:", results2)
|
194 |
+
|
195 |
+
# if __name__ == '__main__':
|
196 |
+
# main()
|
197 |
+
|
198 |
+
|
199 |
import re
|
200 |
import json
|
201 |
import evaluate
|
202 |
import datasets
|
|
|
|
|
203 |
|
204 |
_DESCRIPTION = """
|
205 |
Table evaluation metrics for assessing the matching degree between predicted and reference tables. It calculates the following metrics:
|
|
|
238 |
|
239 |
|
240 |
_CITATION = """
|
241 |
+
@article{scikit-learn,
|
242 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
243 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
244 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
245 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
246 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
247 |
+
journal={Journal of Machine Learning Research},
|
248 |
+
volume={12},
|
249 |
+
pages={2825--2830},
|
250 |
+
year={2011}
|
251 |
+
}
|
252 |
"""
|
253 |
|
254 |
|
255 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
257 |
class Accuracy(evaluate.Metric):
|
258 |
def _info(self):
|
|
|
279 |
|
280 |
return None
|
281 |
|
282 |
+
def _table_to_dict(self,table_str):
|
283 |
+
result_dict = {}
|
284 |
+
|
|
|
285 |
table_str = table_str.lstrip("|").rstrip("|")
|
286 |
parts = table_str.split('||')
|
287 |
parts = [part for part in parts if "--" not in part]
|
|
|
|
|
|
|
|
|
288 |
legends = parts[0].split("|")
|
|
|
289 |
|
290 |
rows = len(parts)
|
291 |
+
if rows == 2:
|
292 |
nums = parts[1].split("|")
|
293 |
+
for i in range(len(nums)):
|
294 |
+
result_dict[legends[i]]=float(nums[i])
|
295 |
+
elif rows >=3:
|
296 |
+
for i in range(1,rows):
|
297 |
+
pre_row = parts[i]
|
298 |
+
pre_row = pre_row.split("|")
|
299 |
+
label = pre_row[0]
|
300 |
+
result_dict[label] = {}
|
301 |
+
for j in range(1,len(pre_row)):
|
302 |
+
result_dict[label][legends[j-1]] = float(pre_row[j])
|
303 |
+
else:
|
304 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
return result_dict
|
307 |
+
def _markdown_to_dict(self,markdown_str):
|
|
|
|
|
308 |
table_str = self._extract_markdown_table(markdown_str)
|
309 |
if table_str:
|
310 |
+
return self._table_to_dict(table_str)
|
311 |
+
else:
|
312 |
+
return None
|
313 |
+
|
314 |
+
def _calculate_table_metrics(self,pred_table, true_table):
|
315 |
+
true_positives = 0
|
316 |
+
false_positives = 0
|
317 |
+
false_negatives = 0
|
318 |
|
319 |
+
# 遍历预测表格的所有键值对
|
320 |
+
for key, pred_value in pred_table.items():
|
321 |
+
if key in true_table:
|
322 |
+
true_value = true_table[key]
|
323 |
+
if isinstance(pred_value, dict) and isinstance(true_value, dict):
|
324 |
+
nested_metrics = self._calculate_table_metrics(pred_value, true_value)
|
325 |
+
true_positives += nested_metrics['true_positives']
|
326 |
+
false_positives += nested_metrics['false_positives']
|
327 |
+
false_negatives += nested_metrics['false_negatives']
|
328 |
+
# 如果值相等
|
329 |
+
elif pred_value == true_value:
|
330 |
+
true_positives += 1
|
331 |
+
else:
|
332 |
+
false_positives += 1
|
333 |
+
false_negatives += 1
|
334 |
+
else:
|
335 |
+
false_positives += 1
|
336 |
|
337 |
+
# 计算未匹配的真实值
|
338 |
+
for key in true_table:
|
339 |
+
if key not in pred_table:
|
340 |
+
false_negatives += 1
|
341 |
+
|
342 |
+
# 计算指标
|
343 |
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
344 |
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
345 |
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
|
|
356 |
def _compute(self, predictions, references):
|
357 |
predictions = "".join(predictions)
|
358 |
references = "".join(references)
|
359 |
+
return self._calculate_table_metrics(self._markdown_to_dict(predictions), self._markdown_to_dict(references))
|
|
|
|
|
360 |
|
361 |
|
362 |
def main():
|
363 |
accuracy_metric = Accuracy()
|
364 |
|
365 |
+
# 计算指标
|
366 |
+
results = accuracy_metric.compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
predictions=["""
|
368 |
+
| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 5 | 8 | 7 | 5 | 9 || wage | 1 | 5 | 3 | 8 | 5 |
|
369 |
+
"""], # 预测的表格
|
370 |
references=["""
|
371 |
+
| | lobby | search | band | charge | chain ||--|--|--|--|--|--|| desire | 1 | 6 | 7 | 5 | 9 || wage | 1 | 5 | 2 | 8 | 5 |
|
372 |
+
"""], # 参考的表格
|
373 |
)
|
374 |
+
print(results) # 输出结果
|
375 |
|
376 |
if __name__ == '__main__':
|
377 |
main()
|
378 |
|
379 |
|
380 |
|
381 |
+
|