Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from transformers import pipeline | |
transcribe = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish") | |
classifier = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis") | |
image_classifier = pipeline("image-classification", model="microsoft/swin-tiny-patch4-window7-224") | |
def audio_to_text(audio): | |
text = transcribe(audio)["text"] | |
return text | |
def text_to_sentiment(text): | |
return classifier(text)[0]["label"] | |
def classify_image(image): | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
answers = image_classifier(image) | |
labels = {answer["label"]: answer["score"] for answer in answers} | |
return labels | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("Example with Gradio Blocks") | |
with gr.Tabs(): | |
with gr.TabItem("Transcribe audio in Spanish"): | |
with gr.Row(): | |
audio = gr.Audio(sources="microphone", type="filepath") | |
transcription = gr.Textbox() | |
transcribeButton = gr.Button("Transcribe") | |
with gr.TabItem("Sentiment analysis in English and Spanish"): | |
with gr.Row(): | |
text = gr.Textbox() | |
label = gr.Label() | |
sentimentButton = gr.Button("Calculate sentiment") | |
with gr.TabItem("Image Classification"): | |
with gr.Row(): | |
image = gr.Image(label="Upload an image here") | |
label_image = gr.Label(num_top_classes=3) | |
classifyButton = gr.Button("Classify image") | |
transcribeButton.click(audio_to_text, inputs = audio, outputs=transcription) | |
sentimentButton.click(text_to_sentiment, inputs=text, outputs=label) | |
classifyButton. click(classify_image, inputs=image, outputs=label_image) | |
demo.launch() | |