Spaces:
Runtime error
Runtime error
Demo with 3 tabs
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from numpy import asarray
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
answer = requests.get("https://git.io/JJkYN")
|
7 |
+
labels =answer.text.split("\n")
|
8 |
+
|
9 |
+
def classify_image(inp):
|
10 |
+
inp = asarray(inp.resize((224, 224)))
|
11 |
+
inp = inp.reshape((-1,) + inp.shape)
|
12 |
+
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
|
13 |
+
prediction = inception_net.predict(inp).flatten()
|
14 |
+
confidences = {labels[k]: float(prediction[k]) for k in range(1000)}
|
15 |
+
return confidences
|
16 |
+
|
17 |
+
def audio_to_text(audio):
|
18 |
+
text = transcribe(audio)["text"]
|
19 |
+
return text
|
20 |
+
|
21 |
+
def text_to_sentiment(text):
|
22 |
+
return classifier(text)[0]["label"]
|
23 |
+
|
24 |
+
|
25 |
+
demo = gr.Blocks()
|
26 |
+
|
27 |
+
with demo:
|
28 |
+
gr.Markdown("Example with Gradio Blocks")
|
29 |
+
with gr.Tabs():
|
30 |
+
with gr.TabItem("Transcribe audio in Spanish"):
|
31 |
+
with gr.Row():
|
32 |
+
audio = gr.Audio(sources="microphone", type="filepath")
|
33 |
+
transcription = gr.Textbox()
|
34 |
+
transcribeButton = gr.Button("Transcribe")
|
35 |
+
|
36 |
+
with gr.TabItem("Sentiment analysis in English and Spanish"):
|
37 |
+
with gr.Row():
|
38 |
+
text = gr.Textbox()
|
39 |
+
label = gr.Label()
|
40 |
+
sentimentButton = gr.Button("Calculate sentiment")
|
41 |
+
|
42 |
+
with gr.TabItem("Image Classification"):
|
43 |
+
with gr.Row():
|
44 |
+
image = gr.Image(label="Upload an image here")
|
45 |
+
label_image = gr.Label(num_top_classes=3)
|
46 |
+
classifyButton = gr.Button("Classify image")
|
47 |
+
|
48 |
+
transcribeButton.click(audio_to_text, inputs = audio, outputs=transcription)
|
49 |
+
sentimentButton.click(text_to_sentiment, inputs=text, outputs=label)
|
50 |
+
classifyButton. click(classify_image, inputs=image, outputs=label_image)
|
51 |
+
|
52 |
+
demo.launch()
|