Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,7 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
from PIL import Image
|
4 |
-
from transformers import AutoProcessor, BlipForConditionalGeneration
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
11 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
-
#processor = # write your code here
|
13 |
-
#model = # write your code here
|
14 |
-
|
15 |
-
def caption_image(input_image: np.ndarray):
|
16 |
-
# Convert numpy array to PIL Image and convert to RGB
|
17 |
-
raw_image = Image.fromarray(input_image).convert('RGB')
|
18 |
-
|
19 |
-
# Process the image
|
20 |
-
# You do not need a question for image captioning
|
21 |
-
text = "the image of"
|
22 |
-
inputs = processor(images=image, text=text, return_tensors="pt")
|
23 |
-
|
24 |
-
|
25 |
-
# Generate a caption for the image
|
26 |
-
# Generate a caption for the image
|
27 |
-
outputs = model.generate(**inputs, max_length=50)
|
28 |
-
|
29 |
-
# Decode the generated tokens to text and store it into `caption`
|
30 |
-
# Decode the generated tokens to text
|
31 |
-
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
32 |
-
# Print the caption
|
33 |
-
#print(caption)
|
34 |
-
|
35 |
-
|
36 |
-
return caption
|
37 |
-
|
38 |
-
iface = gr.Interface(
|
39 |
-
fn=caption_image,
|
40 |
-
inputs=gr.Image(),
|
41 |
-
outputs="text",
|
42 |
-
title="Image Captioning",
|
43 |
-
description="This is a simple web app for generating captions for images using a trained model."
|
44 |
)
|
45 |
-
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
2 |
|
3 |
+
#pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
4 |
+
pipe = pipeline(model="Salesforce/blip-image-captioning-base")
|
5 |
+
preds = pipe(
|
6 |
+
images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
)
|
|