created app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipForConditionalGeneration, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
processor = AutoProcessor.from_pretrained("blip-fine-tuned/")
|
8 |
+
processor.tokenizer.padding_size = 'left'
|
9 |
+
model = BlipForConditionalGeneration.from_pretrained("blip-fine-tuned/")
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
def predict(image):
|
14 |
+
# Preprocess the image
|
15 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
16 |
+
pixel_values = inputs.pixel_values
|
17 |
+
|
18 |
+
# get predictions
|
19 |
+
with torch.no_grad():
|
20 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=100)
|
21 |
+
|
22 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
23 |
+
return generated_caption
|
24 |
+
|
25 |
+
|
26 |
+
interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text")
|
27 |
+
interface.launch()
|