File size: 5,057 Bytes
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9838bd7
 
 
 
 
 
 
 
 
 
 
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9838bd7
d6c7221
 
 
9838bd7
 
 
 
d6c7221
 
 
 
 
 
 
9838bd7
 
 
 
 
 
 
 
 
 
 
 
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
9838bd7
d6c7221
 
 
 
 
9838bd7
d6c7221
 
 
 
9838bd7
d6c7221
 
9838bd7
d6c7221
 
9838bd7
d6c7221
9838bd7
 
d6c7221
 
9838bd7
d6c7221
9838bd7
 
d6c7221
 
9838bd7
d6c7221
9838bd7
 
d6c7221
 
 
9838bd7
d6c7221
 
 
 
 
9838bd7
d6c7221
 
 
 
 
9838bd7
d6c7221
 
 
 
 
 
 
 
 
9838bd7
d6c7221
9838bd7
 
d6c7221
 
 
 
9838bd7
 
 
 
d6c7221
 
 
 
9838bd7
 
 
 
 
 
d6c7221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
from typing import Any
import tensorflow as tf


class EasyDict(dict):
    def __getattr__(self, name: str) -> Any:
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name: str, value: Any) -> None:
        self[name] = value

    def __delattr__(self, name: str) -> None:
        del self[name]


def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def params_args(args):
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--hop",
        type=int,
        default=256,
        help="Hop size (window size = 4*hop)",
    )
    parser.add_argument(
        "--mel_bins",
        type=int,
        default=256,
        help="Mel bins in mel-spectrograms",
    )
    parser.add_argument(
        "--sr",
        type=int,
        default=44100,
        help="Sampling Rate",
    )
    parser.add_argument(
        "--small",
        type=str2bool,
        default=False,
        help="If True, use model with shorter available context, useful for small datasets",
    )
    parser.add_argument(
        "--latdepth",
        type=int,
        default=64,
        help="Depth of generated latent vectors",
    )
    parser.add_argument(
        "--coorddepth",
        type=int,
        default=64,
        help="Dimension of latent coordinate and style random vectors",
    )
    parser.add_argument(
        "--base_channels",
        type=int,
        default=128,
        help="Base channels for generator and discriminator architectures",
    )
    parser.add_argument(
        "--shape",
        type=int,
        default=128,
        help="Length of spectrograms time axis",
    )
    parser.add_argument(
        "--window",
        type=int,
        default=64,
        help="Generator spectrogram window (must divide shape)",
    )
    parser.add_argument(
        "--mu_rescale",
        type=float,
        default=-25.0,
        help="Spectrogram mu used to normalize",
    )
    parser.add_argument(
        "--sigma_rescale",
        type=float,
        default=75.0,
        help="Spectrogram sigma used to normalize",
    )
    parser.add_argument(
        "--load_path_1",
        type=str,
        default="checkpoints/techno/",
        help="Path of pretrained networks weights 1",
    )
    parser.add_argument(
        "--load_path_2",
        type=str,
        default="checkpoints/metal/",
        help="Path of pretrained networks weights 2",
    )
    parser.add_argument(
        "--load_path_3",
        type=str,
        default="checkpoints/misc/",
        help="Path of pretrained networks weights 3",
    )
    parser.add_argument(
        "--dec_path",
        type=str,
        default="checkpoints/ae/",
        help="Path of pretrained decoders weights",
    )
    parser.add_argument(
        "--testing",
        type=str2bool,
        default=True,
        help="True if optimizers weight do not need to be loaded",
    )
    parser.add_argument(
        "--cpu",
        type=str2bool,
        default=False,
        help="True if you wish to use cpu",
    )
    parser.add_argument(
        "--mixed_precision",
        type=str2bool,
        default=True,
        help="True if your GPU supports mixed precision",
    )

    tmp_args = parser.parse_args()

    args.hop = tmp_args.hop
    args.mel_bins = tmp_args.mel_bins
    args.sr = tmp_args.sr
    args.small = tmp_args.small
    args.latdepth = tmp_args.latdepth
    args.coorddepth = tmp_args.coorddepth
    args.base_channels = tmp_args.base_channels
    args.shape = tmp_args.shape
    args.window = tmp_args.window
    args.mu_rescale = tmp_args.mu_rescale
    args.sigma_rescale = tmp_args.sigma_rescale
    args.load_path_1 = tmp_args.load_path_1
    args.load_path_2 = tmp_args.load_path_2
    args.load_path_3 = tmp_args.load_path_3
    args.dec_path = tmp_args.dec_path
    args.testing = tmp_args.testing
    args.cpu = tmp_args.cpu
    args.mixed_precision = tmp_args.mixed_precision

    if args.small:
        args.latlen = 128
    else:
        args.latlen = 256
    args.coordlen = (args.latlen // 2) * 3

    print()

    args.datatype = tf.float32
    gpuls = tf.config.list_physical_devices("GPU")
    if len(gpuls) == 0 or args.cpu:
        args.cpu = True
        args.mixed_precision = False
        tf.config.set_visible_devices([], "GPU")
        print()
        print("Using CPU...")
        print()
    if args.mixed_precision:
        args.datatype = tf.float16
        print()
        print("Using GPU with mixed precision enabled...")
        print()
    if not args.mixed_precision and not args.cpu:
        print()
        print("Using GPU without mixed precision...")
        print()

    return args


def parse_args():
    args = EasyDict()
    return params_args(args)