Spaces:
Build error
Build error
File size: 5,057 Bytes
d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 9838bd7 d6c7221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import argparse
from typing import Any
import tensorflow as tf
class EasyDict(dict):
def __getattr__(self, name: str) -> Any:
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name: str, value: Any) -> None:
self[name] = value
def __delattr__(self, name: str) -> None:
del self[name]
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def params_args(args):
parser = argparse.ArgumentParser()
parser.add_argument(
"--hop",
type=int,
default=256,
help="Hop size (window size = 4*hop)",
)
parser.add_argument(
"--mel_bins",
type=int,
default=256,
help="Mel bins in mel-spectrograms",
)
parser.add_argument(
"--sr",
type=int,
default=44100,
help="Sampling Rate",
)
parser.add_argument(
"--small",
type=str2bool,
default=False,
help="If True, use model with shorter available context, useful for small datasets",
)
parser.add_argument(
"--latdepth",
type=int,
default=64,
help="Depth of generated latent vectors",
)
parser.add_argument(
"--coorddepth",
type=int,
default=64,
help="Dimension of latent coordinate and style random vectors",
)
parser.add_argument(
"--base_channels",
type=int,
default=128,
help="Base channels for generator and discriminator architectures",
)
parser.add_argument(
"--shape",
type=int,
default=128,
help="Length of spectrograms time axis",
)
parser.add_argument(
"--window",
type=int,
default=64,
help="Generator spectrogram window (must divide shape)",
)
parser.add_argument(
"--mu_rescale",
type=float,
default=-25.0,
help="Spectrogram mu used to normalize",
)
parser.add_argument(
"--sigma_rescale",
type=float,
default=75.0,
help="Spectrogram sigma used to normalize",
)
parser.add_argument(
"--load_path_1",
type=str,
default="checkpoints/techno/",
help="Path of pretrained networks weights 1",
)
parser.add_argument(
"--load_path_2",
type=str,
default="checkpoints/metal/",
help="Path of pretrained networks weights 2",
)
parser.add_argument(
"--load_path_3",
type=str,
default="checkpoints/misc/",
help="Path of pretrained networks weights 3",
)
parser.add_argument(
"--dec_path",
type=str,
default="checkpoints/ae/",
help="Path of pretrained decoders weights",
)
parser.add_argument(
"--testing",
type=str2bool,
default=True,
help="True if optimizers weight do not need to be loaded",
)
parser.add_argument(
"--cpu",
type=str2bool,
default=False,
help="True if you wish to use cpu",
)
parser.add_argument(
"--mixed_precision",
type=str2bool,
default=True,
help="True if your GPU supports mixed precision",
)
tmp_args = parser.parse_args()
args.hop = tmp_args.hop
args.mel_bins = tmp_args.mel_bins
args.sr = tmp_args.sr
args.small = tmp_args.small
args.latdepth = tmp_args.latdepth
args.coorddepth = tmp_args.coorddepth
args.base_channels = tmp_args.base_channels
args.shape = tmp_args.shape
args.window = tmp_args.window
args.mu_rescale = tmp_args.mu_rescale
args.sigma_rescale = tmp_args.sigma_rescale
args.load_path_1 = tmp_args.load_path_1
args.load_path_2 = tmp_args.load_path_2
args.load_path_3 = tmp_args.load_path_3
args.dec_path = tmp_args.dec_path
args.testing = tmp_args.testing
args.cpu = tmp_args.cpu
args.mixed_precision = tmp_args.mixed_precision
if args.small:
args.latlen = 128
else:
args.latlen = 256
args.coordlen = (args.latlen // 2) * 3
print()
args.datatype = tf.float32
gpuls = tf.config.list_physical_devices("GPU")
if len(gpuls) == 0 or args.cpu:
args.cpu = True
args.mixed_precision = False
tf.config.set_visible_devices([], "GPU")
print()
print("Using CPU...")
print()
if args.mixed_precision:
args.datatype = tf.float16
print()
print("Using GPU with mixed precision enabled...")
print()
if not args.mixed_precision and not args.cpu:
print()
print("Using GPU without mixed precision...")
print()
return args
def parse_args():
args = EasyDict()
return params_args(args)
|