musika / utils.py
marcop's picture
update demo
0895906
raw
history blame
18.5 kB
import io
import os
import random
import time
from glob import glob
import IPython
import librosa
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
import tensorflow as tf
import tensorflow_io as tfio
from tensorflow.keras import mixed_precision
from tensorflow.keras.optimizers import Adam
from tensorflow.python.framework import random_seed
from tqdm import tqdm
import gradio as gr
from scipy.io.wavfile import write as write_wav
class Utils_functions:
def __init__(self, args):
self.args = args
melmat = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=args.mel_bins,
num_spectrogram_bins=(4 * args.hop) // 2 + 1,
sample_rate=args.sr,
lower_edge_hertz=0.0,
upper_edge_hertz=args.sr // 2,
)
mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
enorm = tf.cast(
tf.expand_dims(tf.constant(2.0 / (mel_f[2 : args.mel_bins + 2] - mel_f[: args.mel_bins])), 0,), tf.float32,
)
melmat = tf.multiply(melmat, enorm)
melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
self.melmat = tf.where(tf.math.is_nan(melmat), tf.zeros_like(melmat), melmat)
with np.errstate(divide="ignore", invalid="ignore"):
self.melmatinv = tf.constant(np.nan_to_num(np.divide(melmat.numpy().T, np.sum(melmat.numpy(), axis=1))).T)
def conc_tog_specphase(self, S, P):
S = tf.cast(S, tf.float32)
P = tf.cast(P, tf.float32)
S = self.denormalize(S, clip=False)
S = tf.math.sqrt(self.db2power(S) + 1e-7)
P = P * np.pi
Sls = tf.split(S, S.shape[0], 0)
S = tf.squeeze(tf.concat(Sls, 1), 0)
Pls = tf.split(P, P.shape[0], 0)
P = tf.squeeze(tf.concat(Pls, 1), 0)
SP = tf.cast(S, tf.complex64) * tf.math.exp(1j * tf.cast(P, tf.complex64))
wv = tf.signal.inverse_stft(
SP,
4 * self.args.hop,
self.args.hop,
fft_length=4 * self.args.hop,
window_fn=tf.signal.inverse_stft_window_fn(self.args.hop),
)
return np.squeeze(wv)
def _tf_log10(self, x):
numerator = tf.math.log(x)
denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def normalize(self, S, clip=False):
S = (S - self.args.mu_rescale) / self.args.sigma_rescale
if clip:
S = tf.clip_by_value(S, -1.0, 1.0)
return S
def normalize_rel(self, S):
S = S - tf.math.reduce_min(S + 1e-7)
S = (S / (tf.math.reduce_max(S + 1e-7) + 1e-7)) + 1e-7
return S
def denormalize(self, S, clip=False):
if clip:
S = tf.clip_by_value(S, -1.0, 1.0)
return (S * self.args.sigma_rescale) + self.args.mu_rescale
def amp2db(self, x):
return 20 * self._tf_log10(tf.clip_by_value(tf.abs(x), 1e-5, 1e100))
def db2amp(self, x):
return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
def power2db(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
if top_db is not None:
log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
return log_spec
def power2db_batch(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
if top_db is not None:
log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec, [-2, -1], keepdims=True) - top_db)
return log_spec
def db2power(self, S_db, ref=1.0):
return ref * tf.math.pow(10.0, 0.1 * S_db)
def wv2mel(self, wv, topdb=80.0):
X = tf.signal.stft(
wv,
frame_length=4 * self.args.hop,
frame_step=self.args.hop,
fft_length=4 * self.args.hop,
window_fn=tf.signal.hann_window,
pad_end=False,
)
S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb) - self.args.ref_level_db)
SM = tf.tensordot(S, self.melmat, 1)
return SM
def mel2spec(self, SM):
return tf.tensordot(SM, tf.transpose(self.melmatinv), 1)
def spec2mel(self, S):
return tf.tensordot(S, self.melmat, 1)
def wv2spec(self, wv, hop_size=256, fac=4):
X = tf.signal.stft(
wv,
frame_length=fac * hop_size,
frame_step=hop_size,
fft_length=fac * hop_size,
window_fn=tf.signal.hann_window,
pad_end=False,
)
return self.normalize(self.power2db(tf.abs(X) ** 2, top_db=None))
def wv2spec_hop(self, wv, topdb=80.0, hopsize=256):
X = tf.signal.stft(
wv,
frame_length=4 * hopsize,
frame_step=hopsize,
fft_length=4 * hopsize,
window_fn=tf.signal.hann_window,
pad_end=False,
)
S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
return tf.tensordot(S, self.melmat, 1)
def distribute(self, x, model, bs=64, dual_out=False):
outls = []
if isinstance(x, list):
bdim = x[0].shape[0]
for i in range(((bdim - 2) // bs) + 1):
outls.append(model([el[i * bs : i * bs + bs] for el in x], training=False))
else:
bdim = x.shape[0]
for i in range(((bdim - 2) // bs) + 1):
outls.append(model(x[i * bs : i * bs + bs], training=False))
if dual_out:
return (
np.concatenate([outls[k][0] for k in range(len(outls))], 0),
np.concatenate([outls[k][1] for k in range(len(outls))], 0),
)
else:
return np.concatenate(outls, 0)
def distribute_enc(self, x, model, bs=64):
outls = []
if isinstance(x, list):
bdim = x[0].shape[0]
for i in range(((bdim - 2) // bs) + 1):
res = model([el[i * bs : i * bs + bs] for el in x], training=False)
resls = tf.split(res, self.args.shape // self.args.window, 0)
res = tf.concat(resls, -2)
outls.append(res)
else:
bdim = x.shape[0]
for i in range(((bdim - 2) // bs) + 1):
res = model(x[i * bs : i * bs + bs], training=False)
resls = tf.split(res, self.args.shape // self.args.window, 0)
res = tf.concat(resls, -2)
outls.append(res)
return np.concatenate(outls, 0)
def distribute_dec(self, x, model, bs=64):
outls = []
bdim = x.shape[0]
for i in range(((bdim - 2) // bs) + 1):
inp = x[i * bs : i * bs + bs]
inpls = tf.split(inp, 2, -2)
inp = tf.concat(inpls, 0)
res = model(inp, training=False)
outls.append(res)
return (
np.concatenate([outls[k][0] for k in range(len(outls))], 0),
np.concatenate([outls[k][1] for k in range(len(outls))], 0),
)
def distribute_dec2(self, x, model, bs=64):
outls = []
bdim = x.shape[0]
for i in range(((bdim - 2) // bs) + 1):
inp1 = x[i * bs : i * bs + bs]
inpls = tf.split(inp1, 2, -2)
inp1 = tf.concat(inpls, 0)
outls.append(model(inp1, training=False))
return np.concatenate(outls, 0)
def get_noise_interp(self):
noiseg = tf.random.normal([1, 64], dtype=tf.float32)
noisel = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
noisec = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
noiser = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
rl = tf.linspace(noisel, noisec, self.args.latlen + 1, axis=-2)[:, :-1, :]
rr = tf.linspace(noisec, noiser, self.args.latlen + 1, axis=-2)
noisetot = tf.concat([rl, rr], -2)
return tf.image.random_crop(noisetot, [1, self.args.latlen, 64 + 64])
def generate_example_stereo(self, models_ls):
(critic, gen, enc, dec, enc2, dec2, critic_rec, gen_ema, [opt_dec, opt_disc],) = models_ls
abb = gen_ema(self.get_noise_interp(), training=False)
abbls = tf.split(abb, abb.shape[-2] // 16, -2)
abb = tf.concat(abbls, 0)
chls = []
for channel in range(2):
ab = self.distribute_dec2(
abb[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth,], dec2,
)
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
ab = tf.concat(abls, 0)
ab_m, ab_p = self.distribute_dec(ab, dec)
wv = self.conc_tog_specphase(ab_m, ab_p)
chls.append(wv)
return np.stack(chls, -1)
# Save in training loop
def save_test_image_full(self, path, models_ls=None):
abwv = self.generate_example_stereo(models_ls)
abwv2 = self.generate_example_stereo(models_ls)
abwv3 = self.generate_example_stereo(models_ls)
abwv4 = self.generate_example_stereo(models_ls)
# IPython.display.display(
# IPython.display.Audio(np.squeeze(np.transpose(abwv)), rate=self.args.sr)
# )
# IPython.display.display(
# IPython.display.Audio(np.squeeze(np.transpose(abwv2)), rate=self.args.sr)
# )
# IPython.display.display(
# IPython.display.Audio(np.squeeze(np.transpose(abwv3)), rate=self.args.sr)
# )
# IPython.display.display(
# IPython.display.Audio(np.squeeze(np.transpose(abwv4)), rate=self.args.sr)
# )
write_wav(f"{path}/out1.wav", self.args.sr, np.squeeze(abwv))
write_wav(f"{path}/out2.wav", self.args.sr, np.squeeze(abwv2))
write_wav(f"{path}/out3.wav", self.args.sr, np.squeeze(abwv3))
write_wav(f"{path}/out4.wav", self.args.sr, np.squeeze(abwv4))
fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
axs[0].imshow(
np.flip(np.array(tf.transpose(self.wv2spec_hop((abwv[:, 0] + abwv[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,),
cmap=None,
)
axs[0].axis("off")
axs[0].set_title("Generated1")
axs[1].imshow(
np.flip(
np.array(tf.transpose(self.wv2spec_hop((abwv2[:, 0] + abwv2[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
),
cmap=None,
)
axs[1].axis("off")
axs[1].set_title("Generated2")
axs[2].imshow(
np.flip(
np.array(tf.transpose(self.wv2spec_hop((abwv3[:, 0] + abwv3[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
),
cmap=None,
)
axs[2].axis("off")
axs[2].set_title("Generated3")
axs[3].imshow(
np.flip(
np.array(tf.transpose(self.wv2spec_hop((abwv4[:, 0] + abwv4[:, 1]) / 2.0, 80.0, 256), [1, 0],)), -2,
),
cmap=None,
)
axs[3].axis("off")
axs[3].set_title("Generated4")
# plt.show()
plt.savefig(f"{path}/output.png")
# Save in training loop
def save_end(
self, epoch, gloss, closs, mloss, models_ls=None, n_save=3, save_path="checkpoints",
):
(critic, gen, enc, dec, enc2, dec2, critic_rec, gen_ema, [opt_dec, opt_disc],) = models_ls
if epoch % n_save == 0:
print("Saving...")
path = f"{save_path}/MUSIKA!_-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}"
os.mkdir(path)
critic.save_weights(path + "/critic.h5")
critic_rec.save_weights(path + "/critic_rec.h5")
gen.save_weights(path + "/gen.h5")
gen_ema.save_weights(path + "/gen_ema.h5")
# enc.save_weights(path + "/enc.h5")
# dec.save_weights(path + "/dec.h5")
# enc2.save_weights(path + "/enc2.h5")
# dec2.save_weights(path + "/dec2.h5")
np.save(path + "/opt_dec.npy", opt_dec.get_weights())
np.save(path + "/opt_disc.npy", opt_disc.get_weights())
self.save_test_image_full(path, models_ls=models_ls)
def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)
def distribute_gen(self, x, model, bs=64):
outls = []
bdim = x.shape[0]
if bdim == 1:
bdim = 2
for i in range(((bdim - 2) // bs) + 1):
outls.append(model(x[i * bs : i * bs + bs], training=False))
return np.concatenate(outls, 0)
def get_noise_interp_multi(self, fac=1, var=2.0):
noiseg = self.truncated_normal([1, 64], var, dtype=tf.float32)
if var < 1.75:
var = 1.75
noisels = [
tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1) for i in range(2 + (fac - 1))
]
rls = [
tf.linspace(noisels[k], noisels[k + 1], self.args.latlen + 1, axis=-2)[:, :-1, :]
for k in range(len(noisels) - 1)
]
return tf.concat(rls, 0)
def stfunc(self, genre, z, var, models_ls_techno, models_ls_classical):
(
critic,
gen,
enc,
dec_techno,
enc2,
dec2_techno,
critic_rec,
gen_ema_techno,
[opt_dec, opt_disc],
) = models_ls_techno
(
critic,
gen,
enc,
dec_classical,
enc2,
dec2_classical,
critic_rec,
gen_ema_classical,
[opt_dec, opt_disc],
) = models_ls_classical
var = 0.01 + (3.5 * (var / 100.0))
if z == 0:
fac = 1
elif z == 1:
fac = 5
else:
fac = 10
if genre == 0:
dec = dec_techno
dec2 = dec2_techno
gen_ema = gen_ema_techno
else:
dec = dec_classical
dec2 = dec2_classical
gen_ema = gen_ema_classical
bef = time.time()
ab = self.distribute_gen(self.get_noise_interp_multi(fac, var), gen_ema)
abls = tf.split(ab, ab.shape[0], 0)
ab = tf.concat(abls, -2)
abls = tf.split(ab, ab.shape[-2] // 16, -2)
abi = tf.concat(abls, 0)
chls = []
for channel in range(2):
ab = self.distribute_dec2(
abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
dec2,
bs=128,
)
# abls = tf.split(ab, ab.shape[-2] // (self.args.shape // 2), -2)
abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
ab = tf.concat(abls, 0)
ab_m, ab_p = self.distribute_dec(ab, dec, bs=128)
abwv = self.conc_tog_specphase(ab_m, ab_p)
chls.append(abwv)
print(
f"Time for complete generation pipeline: {time.time()-bef} s {int(np.round((fac*23.)/(time.time()-bef)))}x faster than Real Time!"
)
abwvc = np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
spec = np.flip(
np.array(
tf.transpose(
self.wv2spec_hop((abwvc[: 23 * self.args.sr, 0] + abwvc[: 23 * self.args.sr, 1]) / 2.0, 80.0, 256),
[1, 0],
)
),
-2,
)
return (
spec,
(self.args.sr, np.int16(abwvc * 32767.0)),
)
def render_gradio(self, models_ls_techno, models_ls_classical, train=True):
article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini)) and Jan Schlüter at Johannes Kepler Universität Linz."
def gradio_func(x, y, z):
return self.stfunc(x, y, z, models_ls_techno, models_ls_classical)
iface = gr.Interface(
fn=gradio_func,
inputs=[
gr.inputs.Radio(
choices=["Techno/Experimental", "Classical"],
type="index",
default="Classical",
label="Music Genre to Generate",
),
gr.inputs.Radio(
choices=["23s", "1m 58s", "3m 57s"], type="index", default="1m 58s", label="Generated Music Length",
),
gr.inputs.Slider(
minimum=0,
maximum=100,
step=1,
default=25,
label="Stability[left]/Variety[right] Tradeoff (Truncation Trick)",
),
],
outputs=[
gr.outputs.Image(label="Log-MelSpectrogram of Generated Audio (first 23 sec)"),
gr.outputs.Audio(type="numpy", label="Generated Audio"),
],
allow_screenshot=False,
title="musika!",
description="Blazingly Fast Stereo Waveform Music Generation of Arbitrary Length. Be patient and enjoy the weirdness!",
article=article_text,
layout="vertical",
theme="huggingface",
)
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")
print("CLICK ON LINK BELOW TO OPEN GRADIO INTERFACE")
if train:
iface.launch(prevent_thread_lock=True)
else:
iface.launch(enable_queue=True)
# iface.launch(share=True, enable_queue=True)
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")
print("--------------------------------")