Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile, File, HTTPException | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.staticfiles import StaticFiles | |
import tempfile | |
import os | |
import sys | |
import traceback | |
from datetime import datetime | |
from typing import Dict, Any | |
import shutil | |
import torch | |
import asyncio | |
import logging | |
from contextlib import asynccontextmanager | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger("pdf_converter_api") | |
# Add the parent directory to sys.path to import convert_pdf_to_md | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
# Import the initialization function as well | |
from pdf_converter.convert_pdf_to_md import convert_pdf, initialize_converter | |
# --- Configuration for output directory --- | |
# In Docker container, use /app prefix | |
# Adjusted path assuming the app runs from /app in Docker | |
base_dir = "/app" # Use /app for Docker environment | |
if not os.path.exists(base_dir): | |
# Fallback for local testing (assuming run from project root) | |
base_dir = "." | |
out_sub_dir = "docker_mineru/output" | |
output_dir = os.path.join(base_dir, out_sub_dir) | |
images_dir = os.path.join(output_dir, "images") | |
# Create output directory if it doesn't exist | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(images_dir, exist_ok=True) | |
logger.info(f"Using output directory: {output_dir}") | |
# --- End Configuration --- | |
# Track initialization status | |
initialization_successful = False | |
# --- Lifespan management for model loading --- | |
async def lifespan(app: FastAPI): | |
global initialization_successful | |
# Load the ML model during startup | |
logger.info("Application startup: Initializing marker converter...") | |
loop = asyncio.get_event_loop() | |
# Run in executor to avoid blocking the event loop | |
try: | |
# Add timeout to prevent indefinite hanging | |
await asyncio.wait_for( | |
loop.run_in_executor(None, initialize_converter), | |
timeout=300 # 5 minute timeout for initialization | |
) | |
initialization_successful = True | |
logger.info("Marker converter initialization process finished successfully.") | |
except asyncio.TimeoutError: | |
logger.error("Marker converter initialization timed out after 5 minutes.") | |
initialization_successful = False | |
except Exception as e: | |
logger.error(f"Marker converter initialization failed: {e}") | |
logger.error(traceback.format_exc()) | |
initialization_successful = False | |
yield | |
# Clean up resources if needed during shutdown | |
logger.info("Application shutdown.") | |
# Application metadata | |
app_description = """ | |
# PDF to Markdown Converter API (Optimized) | |
This API provides PDF processing capabilities to convert PDF documents to Markdown format using marker. | |
It pre-loads models for faster processing. | |
## Features: | |
- PDF to Markdown conversion using marker | |
- Optimized for faster startup and processing | |
- Simple API interface | |
""" | |
app = FastAPI( | |
title="PDF to Markdown API", | |
description=app_description, | |
version="1.1.0", # Version bump | |
lifespan=lifespan # Add the lifespan manager | |
) | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Mount the output directory - Adjust mount path to be relative to API URL | |
# We use output_dir for the actual file path, but /output for the URL path | |
app.mount("/output", StaticFiles(directory=output_dir), name="output") | |
# Health check endpoint | |
async def health_check() -> Dict[str, Any]: | |
""" | |
Health check endpoint to verify the service is running. | |
Returns the service status and current time. | |
""" | |
gpu_info = { | |
"cuda_available": torch.cuda.is_available(), | |
"device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0, | |
"device_name": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "N/A", | |
"current_device": torch.cuda.current_device() if torch.cuda.is_available() else -1, | |
"memory_allocated": f"{torch.cuda.memory_allocated()/1024**2:.2f} MB" if torch.cuda.is_available() else "N/A", | |
"memory_reserved": f"{torch.cuda.memory_reserved()/1024**2:.2f} MB" if torch.cuda.is_available() else "N/A", | |
} | |
return { | |
"status": "healthy" if initialization_successful else "degraded", | |
"timestamp": datetime.now().isoformat(), | |
"service": "pdf-to-markdown-converter", | |
"gpu": gpu_info, | |
"model_initialized": initialization_successful, | |
"output_directory_used": output_dir # Add info for debugging | |
} | |
async def convert(file: UploadFile = File(...)) -> Dict[str, Any]: | |
""" | |
Convert a PDF file to markdown using the pre-loaded marker converter. | |
Parameters: | |
file: The PDF file to process | |
Returns: | |
A JSON object containing the conversion result | |
""" | |
# Check if models initialized successfully | |
if not initialization_successful: | |
return JSONResponse( | |
status_code=503, # Service Unavailable | |
content={ | |
"error": "Service not ready", | |
"detail": "The model initialization failed during startup. The service cannot process requests at this time." | |
} | |
) | |
if not file.filename or not file.filename.lower().endswith('.pdf'): | |
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.") | |
content = await file.read() | |
temp_pdf_path = None | |
try: | |
# Use a secure temporary directory within the app's writable space | |
# In Docker, /tmp should be writable by the 'user' | |
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False, dir="/tmp") as temp_pdf: | |
temp_pdf.write(content) | |
temp_pdf_path = temp_pdf.name | |
logger.info(f"Temporary PDF saved to: {temp_pdf_path}") | |
# Get the base name of the file for the output | |
filename_without_ext = os.path.splitext(os.path.basename(file.filename))[0] | |
# Use the configured output_dir for saving the markdown file | |
output_md_file = os.path.join(output_dir, f"{filename_without_ext}.md") | |
logger.info(f"Output markdown path: {output_md_file}") | |
# Process the PDF using the pre-loaded converter | |
md_content = convert_pdf(temp_pdf_path, output_md_file) | |
# Construct the relative path for the URL response | |
# This path should correspond to the StaticFiles mount point | |
relative_output_path = os.path.join("/output", f"{filename_without_ext}.md") | |
return { | |
"filename": file.filename, | |
"status": "success", | |
# Consider omitting full content in response for performance/size | |
"markdown_preview": md_content[:1000] + "..." if md_content else "", | |
"output_file_url": relative_output_path | |
} | |
except Exception as e: | |
error_detail = str(e) | |
error_trace = traceback.format_exc() | |
logger.error(f"Error processing PDF '{file.filename if file else 'N/A'}': {error_detail}") | |
logger.error(error_trace) | |
return JSONResponse( | |
status_code=500, | |
content={ | |
"error": "Error processing PDF", | |
"detail": error_detail, | |
"filename": file.filename if file and hasattr(file, 'filename') else None | |
} | |
) | |
finally: | |
# Clean up the temporary file | |
if temp_pdf_path and os.path.exists(temp_pdf_path): | |
try: | |
os.unlink(temp_pdf_path) | |
logger.info(f"Temporary file {temp_pdf_path} deleted.") | |
except Exception as unlink_err: | |
logger.error(f"Error deleting temporary file {temp_pdf_path}: {unlink_err}") | |
# Remove the old __main__ block if it exists, as CMD in Dockerfile handles startup | |
# if __name__ == "__main__": | |
# import uvicorn | |
# uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=False) |