Spaces:
Sleeping
Sleeping
Commit
·
d362bfa
1
Parent(s):
c921e20
Token needed, correlation tool
Browse files- .gitignore +1 -0
- .gradio/certificate.pem +31 -0
- __pycache__/Gradio_UI.cpython-312.pyc +0 -0
- __pycache__/local_model.cpython-312.pyc +0 -0
- app.py +20 -10
- local_model.py +45 -0
- prompts.yaml +0 -82
- tools/__pycache__/final_answer.cpython-312.pyc +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
__pycache__/Gradio_UI.cpython-312.pyc
ADDED
Binary file (12 kB). View file
|
|
__pycache__/local_model.cpython-312.pyc
ADDED
Binary file (2.09 kB). View file
|
|
app.py
CHANGED
@@ -6,15 +6,24 @@ import yaml
|
|
6 |
from tools.final_answer import FinalAnswerTool
|
7 |
import numpy as np
|
8 |
from typing import List, Union
|
|
|
|
|
|
|
9 |
|
|
|
10 |
from Gradio_UI import GradioUI
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
14 |
@tool
|
15 |
def compute_correlation(
|
16 |
arg1: List[Union[float, int]], arg2: List[Union[float, int]]
|
17 |
-
) ->
|
18 |
# Keep this format for the description / args / args description but feel free to modify the tool
|
19 |
"""A tool to compute the correlation between two lists of values.
|
20 |
Args:
|
@@ -22,7 +31,8 @@ def compute_correlation(
|
|
22 |
arg2: a second list of values.
|
23 |
"""
|
24 |
|
25 |
-
corr = float(np.corrcoef(arg1, arg2)[0, 1])
|
|
|
26 |
|
27 |
return corr
|
28 |
|
@@ -44,23 +54,24 @@ def get_current_time_in_timezone(timezone: str) -> str:
|
|
44 |
|
45 |
|
46 |
final_answer = FinalAnswerTool()
|
|
|
47 |
model = HfApiModel(
|
48 |
max_tokens=2096,
|
49 |
temperature=0.5,
|
50 |
-
model_id="
|
|
|
51 |
custom_role_conversions=None,
|
52 |
)
|
53 |
|
54 |
-
|
55 |
-
# Import tool from Hub
|
56 |
-
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
57 |
-
|
58 |
with open("prompts.yaml", "r") as stream:
|
59 |
prompt_templates = yaml.safe_load(stream)
|
60 |
|
61 |
agent = CodeAgent(
|
62 |
model=model,
|
63 |
-
tools=[
|
|
|
|
|
|
|
64 |
max_steps=6,
|
65 |
verbosity_level=1,
|
66 |
grammar=None,
|
@@ -72,4 +83,3 @@ agent = CodeAgent(
|
|
72 |
|
73 |
|
74 |
GradioUI(agent).launch()
|
75 |
-
|
|
|
6 |
from tools.final_answer import FinalAnswerTool
|
7 |
import numpy as np
|
8 |
from typing import List, Union
|
9 |
+
from local_model import LocalModel
|
10 |
+
import logging
|
11 |
+
from dotenv import load_dotenv
|
12 |
|
13 |
+
import os
|
14 |
from Gradio_UI import GradioUI
|
15 |
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
21 |
+
|
22 |
|
|
|
23 |
@tool
|
24 |
def compute_correlation(
|
25 |
arg1: List[Union[float, int]], arg2: List[Union[float, int]]
|
26 |
+
) -> str: # it's import to specify the return type
|
27 |
# Keep this format for the description / args / args description but feel free to modify the tool
|
28 |
"""A tool to compute the correlation between two lists of values.
|
29 |
Args:
|
|
|
31 |
arg2: a second list of values.
|
32 |
"""
|
33 |
|
34 |
+
corr = str(float(np.corrcoef(arg1, arg2)[0, 1]))
|
35 |
+
logger.info(f"Got correlation value: {corr}")
|
36 |
|
37 |
return corr
|
38 |
|
|
|
54 |
|
55 |
|
56 |
final_answer = FinalAnswerTool()
|
57 |
+
# model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
|
58 |
model = HfApiModel(
|
59 |
max_tokens=2096,
|
60 |
temperature=0.5,
|
61 |
+
model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # it is possible that this model may be overloaded
|
62 |
+
token=HF_TOKEN,
|
63 |
custom_role_conversions=None,
|
64 |
)
|
65 |
|
|
|
|
|
|
|
|
|
66 |
with open("prompts.yaml", "r") as stream:
|
67 |
prompt_templates = yaml.safe_load(stream)
|
68 |
|
69 |
agent = CodeAgent(
|
70 |
model=model,
|
71 |
+
tools=[
|
72 |
+
final_answer,
|
73 |
+
compute_correlation,
|
74 |
+
], ## add your tools here (don't remove final answer)
|
75 |
max_steps=6,
|
76 |
verbosity_level=1,
|
77 |
grammar=None,
|
|
|
83 |
|
84 |
|
85 |
GradioUI(agent).launch()
|
|
local_model.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import logging
|
4 |
+
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
logger.addHandler(logging.StreamHandler())
|
9 |
+
|
10 |
+
|
11 |
+
class LocalModel:
|
12 |
+
def __init__(self, model_name: str, max_tokens: int, temperature: float):
|
13 |
+
self.max_tokens = max_tokens
|
14 |
+
self.temperature = temperature
|
15 |
+
# Load the model locally. For a demo, you may choose a lighter model if needed.
|
16 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_name, torch_dtype=torch.float16
|
18 |
+
)
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
self.pipeline = pipeline(
|
21 |
+
"text-generation",
|
22 |
+
model=self.model,
|
23 |
+
tokenizer=self.tokenizer,
|
24 |
+
)
|
25 |
+
|
26 |
+
def __call__(self, prompt: str, **kwargs) -> str:
|
27 |
+
# Adjust the call signature as needed by your agent
|
28 |
+
result = self.pipeline(
|
29 |
+
prompt,
|
30 |
+
max_new_tokens=self.max_tokens,
|
31 |
+
temperature=self.temperature,
|
32 |
+
**kwargs,
|
33 |
+
)
|
34 |
+
|
35 |
+
output = result[0]["generated_text"]
|
36 |
+
logger.info(f"Model output: {output}")
|
37 |
+
# Assuming the result is a list with one dict containing the generated text:
|
38 |
+
return result[0]["generated_text"]
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
local_model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
|
43 |
+
output = local_model("A big foot")
|
44 |
+
|
45 |
+
print(output)
|
prompts.yaml
CHANGED
@@ -38,88 +38,6 @@
|
|
38 |
final_answer(result)
|
39 |
```<end_code>
|
40 |
|
41 |
-
---
|
42 |
-
Task:
|
43 |
-
"Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.
|
44 |
-
You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
|
45 |
-
{'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}"
|
46 |
-
|
47 |
-
Thought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
|
48 |
-
Code:
|
49 |
-
```py
|
50 |
-
translated_question = translator(question=question, src_lang="French", tgt_lang="English")
|
51 |
-
print(f"The translated question is {translated_question}.")
|
52 |
-
answer = image_qa(image=image, question=translated_question)
|
53 |
-
final_answer(f"The answer is {answer}")
|
54 |
-
```<end_code>
|
55 |
-
|
56 |
-
---
|
57 |
-
Task:
|
58 |
-
In a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.
|
59 |
-
What does he say was the consequence of Einstein learning too much math on his creativity, in one word?
|
60 |
-
|
61 |
-
Thought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.
|
62 |
-
Code:
|
63 |
-
```py
|
64 |
-
pages = search(query="1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein")
|
65 |
-
print(pages)
|
66 |
-
```<end_code>
|
67 |
-
Observation:
|
68 |
-
No result found for query "1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein".
|
69 |
-
|
70 |
-
Thought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.
|
71 |
-
Code:
|
72 |
-
```py
|
73 |
-
pages = search(query="1979 interview Stanislaus Ulam")
|
74 |
-
print(pages)
|
75 |
-
```<end_code>
|
76 |
-
Observation:
|
77 |
-
Found 6 pages:
|
78 |
-
[Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)
|
79 |
-
|
80 |
-
[Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)
|
81 |
-
|
82 |
-
(truncated)
|
83 |
-
|
84 |
-
Thought: I will read the first 2 pages to know more.
|
85 |
-
Code:
|
86 |
-
```py
|
87 |
-
for url in ["https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/", "https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/"]:
|
88 |
-
whole_page = visit_webpage(url)
|
89 |
-
print(whole_page)
|
90 |
-
print("\n" + "="*80 + "\n") # Print separator between pages
|
91 |
-
```<end_code>
|
92 |
-
Observation:
|
93 |
-
Manhattan Project Locations:
|
94 |
-
Los Alamos, NM
|
95 |
-
Stanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at
|
96 |
-
(truncated)
|
97 |
-
|
98 |
-
Thought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: "He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity." Let's answer in one word.
|
99 |
-
Code:
|
100 |
-
```py
|
101 |
-
final_answer("diminished")
|
102 |
-
```<end_code>
|
103 |
-
|
104 |
-
---
|
105 |
-
Task: "Which city has the highest population: Guangzhou or Shanghai?"
|
106 |
-
|
107 |
-
Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.
|
108 |
-
Code:
|
109 |
-
```py
|
110 |
-
for city in ["Guangzhou", "Shanghai"]:
|
111 |
-
print(f"Population {city}:", search(f"{city} population")
|
112 |
-
```<end_code>
|
113 |
-
Observation:
|
114 |
-
Population Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']
|
115 |
-
Population Shanghai: '26 million (2019)'
|
116 |
-
|
117 |
-
Thought: Now I know that Shanghai has the highest population.
|
118 |
-
Code:
|
119 |
-
```py
|
120 |
-
final_answer("Shanghai")
|
121 |
-
```<end_code>
|
122 |
-
|
123 |
---
|
124 |
Task: "What is the current age of the pope, raised to the power 0.36?"
|
125 |
|
|
|
38 |
final_answer(result)
|
39 |
```<end_code>
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
---
|
42 |
Task: "What is the current age of the pope, raised to the power 0.36?"
|
43 |
|
tools/__pycache__/final_answer.cpython-312.pyc
ADDED
Binary file (1.02 kB). View file
|
|