marcusinect commited on
Commit
d362bfa
·
1 Parent(s): c921e20

Token needed, correlation tool

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
__pycache__/Gradio_UI.cpython-312.pyc ADDED
Binary file (12 kB). View file
 
__pycache__/local_model.cpython-312.pyc ADDED
Binary file (2.09 kB). View file
 
app.py CHANGED
@@ -6,15 +6,24 @@ import yaml
6
  from tools.final_answer import FinalAnswerTool
7
  import numpy as np
8
  from typing import List, Union
 
 
 
9
 
 
10
  from Gradio_UI import GradioUI
11
 
 
 
 
 
 
 
12
 
13
- # Below is an example of a tool that does nothing. Amaze us with your creativity !
14
  @tool
15
  def compute_correlation(
16
  arg1: List[Union[float, int]], arg2: List[Union[float, int]]
17
- ) -> float: # it's import to specify the return type
18
  # Keep this format for the description / args / args description but feel free to modify the tool
19
  """A tool to compute the correlation between two lists of values.
20
  Args:
@@ -22,7 +31,8 @@ def compute_correlation(
22
  arg2: a second list of values.
23
  """
24
 
25
- corr = float(np.corrcoef(arg1, arg2)[0, 1])
 
26
 
27
  return corr
28
 
@@ -44,23 +54,24 @@ def get_current_time_in_timezone(timezone: str) -> str:
44
 
45
 
46
  final_answer = FinalAnswerTool()
 
47
  model = HfApiModel(
48
  max_tokens=2096,
49
  temperature=0.5,
50
- model_id="https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud", # it is possible that this model may be overloaded
 
51
  custom_role_conversions=None,
52
  )
53
 
54
-
55
- # Import tool from Hub
56
- image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
57
-
58
  with open("prompts.yaml", "r") as stream:
59
  prompt_templates = yaml.safe_load(stream)
60
 
61
  agent = CodeAgent(
62
  model=model,
63
- tools=[final_answer, compute_correlation], ## add your tools here (don't remove final answer)
 
 
 
64
  max_steps=6,
65
  verbosity_level=1,
66
  grammar=None,
@@ -72,4 +83,3 @@ agent = CodeAgent(
72
 
73
 
74
  GradioUI(agent).launch()
75
-
 
6
  from tools.final_answer import FinalAnswerTool
7
  import numpy as np
8
  from typing import List, Union
9
+ from local_model import LocalModel
10
+ import logging
11
+ from dotenv import load_dotenv
12
 
13
+ import os
14
  from Gradio_UI import GradioUI
15
 
16
+ logger = logging.getLogger(__name__)
17
+
18
+ load_dotenv()
19
+
20
+ HF_TOKEN = os.getenv("HF_TOKEN")
21
+
22
 
 
23
  @tool
24
  def compute_correlation(
25
  arg1: List[Union[float, int]], arg2: List[Union[float, int]]
26
+ ) -> str: # it's import to specify the return type
27
  # Keep this format for the description / args / args description but feel free to modify the tool
28
  """A tool to compute the correlation between two lists of values.
29
  Args:
 
31
  arg2: a second list of values.
32
  """
33
 
34
+ corr = str(float(np.corrcoef(arg1, arg2)[0, 1]))
35
+ logger.info(f"Got correlation value: {corr}")
36
 
37
  return corr
38
 
 
54
 
55
 
56
  final_answer = FinalAnswerTool()
57
+ # model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
58
  model = HfApiModel(
59
  max_tokens=2096,
60
  temperature=0.5,
61
+ model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # it is possible that this model may be overloaded
62
+ token=HF_TOKEN,
63
  custom_role_conversions=None,
64
  )
65
 
 
 
 
 
66
  with open("prompts.yaml", "r") as stream:
67
  prompt_templates = yaml.safe_load(stream)
68
 
69
  agent = CodeAgent(
70
  model=model,
71
+ tools=[
72
+ final_answer,
73
+ compute_correlation,
74
+ ], ## add your tools here (don't remove final answer)
75
  max_steps=6,
76
  verbosity_level=1,
77
  grammar=None,
 
83
 
84
 
85
  GradioUI(agent).launch()
 
local_model.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
3
+ import logging
4
+
5
+
6
+ logger = logging.getLogger(__name__)
7
+
8
+ logger.addHandler(logging.StreamHandler())
9
+
10
+
11
+ class LocalModel:
12
+ def __init__(self, model_name: str, max_tokens: int, temperature: float):
13
+ self.max_tokens = max_tokens
14
+ self.temperature = temperature
15
+ # Load the model locally. For a demo, you may choose a lighter model if needed.
16
+ self.model = AutoModelForCausalLM.from_pretrained(
17
+ model_name, torch_dtype=torch.float16
18
+ )
19
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
20
+ self.pipeline = pipeline(
21
+ "text-generation",
22
+ model=self.model,
23
+ tokenizer=self.tokenizer,
24
+ )
25
+
26
+ def __call__(self, prompt: str, **kwargs) -> str:
27
+ # Adjust the call signature as needed by your agent
28
+ result = self.pipeline(
29
+ prompt,
30
+ max_new_tokens=self.max_tokens,
31
+ temperature=self.temperature,
32
+ **kwargs,
33
+ )
34
+
35
+ output = result[0]["generated_text"]
36
+ logger.info(f"Model output: {output}")
37
+ # Assuming the result is a list with one dict containing the generated text:
38
+ return result[0]["generated_text"]
39
+
40
+
41
+ if __name__ == "__main__":
42
+ local_model = LocalModel("Qwen/Qwen2.5-1.5B", max_tokens=100, temperature=0.5)
43
+ output = local_model("A big foot")
44
+
45
+ print(output)
prompts.yaml CHANGED
@@ -38,88 +38,6 @@
38
  final_answer(result)
39
  ```<end_code>
40
 
41
- ---
42
- Task:
43
- "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.
44
- You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
45
- {'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}"
46
-
47
- Thought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
48
- Code:
49
- ```py
50
- translated_question = translator(question=question, src_lang="French", tgt_lang="English")
51
- print(f"The translated question is {translated_question}.")
52
- answer = image_qa(image=image, question=translated_question)
53
- final_answer(f"The answer is {answer}")
54
- ```<end_code>
55
-
56
- ---
57
- Task:
58
- In a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.
59
- What does he say was the consequence of Einstein learning too much math on his creativity, in one word?
60
-
61
- Thought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.
62
- Code:
63
- ```py
64
- pages = search(query="1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein")
65
- print(pages)
66
- ```<end_code>
67
- Observation:
68
- No result found for query "1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein".
69
-
70
- Thought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.
71
- Code:
72
- ```py
73
- pages = search(query="1979 interview Stanislaus Ulam")
74
- print(pages)
75
- ```<end_code>
76
- Observation:
77
- Found 6 pages:
78
- [Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)
79
-
80
- [Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)
81
-
82
- (truncated)
83
-
84
- Thought: I will read the first 2 pages to know more.
85
- Code:
86
- ```py
87
- for url in ["https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/", "https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/"]:
88
- whole_page = visit_webpage(url)
89
- print(whole_page)
90
- print("\n" + "="*80 + "\n") # Print separator between pages
91
- ```<end_code>
92
- Observation:
93
- Manhattan Project Locations:
94
- Los Alamos, NM
95
- Stanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at
96
- (truncated)
97
-
98
- Thought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: "He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity." Let's answer in one word.
99
- Code:
100
- ```py
101
- final_answer("diminished")
102
- ```<end_code>
103
-
104
- ---
105
- Task: "Which city has the highest population: Guangzhou or Shanghai?"
106
-
107
- Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.
108
- Code:
109
- ```py
110
- for city in ["Guangzhou", "Shanghai"]:
111
- print(f"Population {city}:", search(f"{city} population")
112
- ```<end_code>
113
- Observation:
114
- Population Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']
115
- Population Shanghai: '26 million (2019)'
116
-
117
- Thought: Now I know that Shanghai has the highest population.
118
- Code:
119
- ```py
120
- final_answer("Shanghai")
121
- ```<end_code>
122
-
123
  ---
124
  Task: "What is the current age of the pope, raised to the power 0.36?"
125
 
 
38
  final_answer(result)
39
  ```<end_code>
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  ---
42
  Task: "What is the current age of the pope, raised to the power 0.36?"
43
 
tools/__pycache__/final_answer.cpython-312.pyc ADDED
Binary file (1.02 kB). View file