Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from scipy import stats
|
3 |
+
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PolynomialFeatures
|
4 |
+
from sklearn.linear_model import Ridge, ElasticNet, LinearRegression, Lasso
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import sweetviz as sv
|
7 |
+
import dtale
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Load the dataset
|
11 |
+
df = pd.read_csv('ebw_data.csv')
|
12 |
+
|
13 |
+
X = df.drop(['Width', 'Depth'], axis=1)
|
14 |
+
y = df[['Width', 'Depth']]
|
15 |
+
|
16 |
+
# Разделим данные на трэйн и тест
|
17 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
|
18 |
+
|
19 |
+
# Создайте экземпляр модели линейной регрессии.
|
20 |
+
model = LinearRegression()
|
21 |
+
|
22 |
+
# Фитим
|
23 |
+
model.fit(X_train, y_train)
|
24 |
+
|
25 |
+
# Предиктим
|
26 |
+
y_pred = model.predict(X_test)
|
27 |
+
|
28 |
+
# Оценка производительности модели
|
29 |
+
score = model.score(X_test, y_test)
|
30 |
+
#print('Accuracy:', score)
|
31 |
+
def greet(IW, IF, VW, FP):
|
32 |
+
X_new = pd.DataFrame({'IW': [IW], 'IF': [IF], 'VW': [VW], 'FP': [FP]})
|
33 |
+
y_predd = model.predict(X_new)
|
34 |
+
arr_reshaped = np.reshape(y_predd, (2, 1))
|
35 |
+
arr1, arr2 = np.split(arr_reshaped, 2)
|
36 |
+
value1 = arr1[0]
|
37 |
+
value2 = arr2[0]
|
38 |
+
return value1, value2
|
39 |
+
|
40 |
+
inputs = [gr.Slider(43, 49), gr.Slider(131, 150), gr.Slider(4.5, 10), gr.Slider(50, 125)]
|
41 |
+
outputs = [gr.Number(label="Width"), gr.Number(label="Depth")]
|
42 |
+
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=greet,
|
45 |
+
inputs=inputs,
|
46 |
+
outputs=outputs,
|
47 |
+
title="Predict Depth and Width"
|
48 |
+
)
|
49 |
+
demo.launch()
|