Spaces:
Sleeping
Sleeping
Initial commit
Browse files- README.md +1 -1
- app.py +125 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -8,7 +8,7 @@ sdk_version: 1.42.2
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description: Analyze sentiment in Medium
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Analyze sentiment in Medium articles
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
import requests
|
5 |
+
import pandas as pd
|
6 |
+
import altair as alt
|
7 |
+
from collections import OrderedDict
|
8 |
+
from nltk.tokenize import sent_tokenize
|
9 |
+
import trafilatura
|
10 |
+
import validators
|
11 |
+
|
12 |
+
# Load the punkt tokenizer from nltk
|
13 |
+
import nltk
|
14 |
+
nltk.download('punkt')
|
15 |
+
|
16 |
+
# Load model and tokenizer
|
17 |
+
model_name = 'dejanseo/sentiment'
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
|
21 |
+
# Sentiment labels as textual descriptions
|
22 |
+
sentiment_labels = {
|
23 |
+
0: "very positive",
|
24 |
+
1: "positive",
|
25 |
+
2: "somewhat positive",
|
26 |
+
3: "neutral",
|
27 |
+
4: "somewhat negative",
|
28 |
+
5: "negative",
|
29 |
+
6: "very negative"
|
30 |
+
}
|
31 |
+
|
32 |
+
# Background colors for sentiments
|
33 |
+
background_colors = {
|
34 |
+
"very positive": "rgba(0, 255, 0, 0.5)",
|
35 |
+
"positive": "rgba(0, 255, 0, 0.3)",
|
36 |
+
"somewhat positive": "rgba(0, 255, 0, 0.1)",
|
37 |
+
"neutral": "rgba(128, 128, 128, 0.1)",
|
38 |
+
"somewhat negative": "rgba(255, 0, 0, 0.1)",
|
39 |
+
"negative": "rgba(255, 0, 0, 0.3)",
|
40 |
+
"very negative": "rgba(255, 0, 0, 0.5)"
|
41 |
+
}
|
42 |
+
|
43 |
+
# Function to get text content from a URL, restricted to Medium stories/articles
|
44 |
+
def get_text_from_url(url):
|
45 |
+
if not validators.url(url):
|
46 |
+
return None, "Invalid URL"
|
47 |
+
|
48 |
+
if "medium.com/" not in url: # Check if it's a Medium URL
|
49 |
+
return None, "URL is not a Medium story/article."
|
50 |
+
|
51 |
+
try:
|
52 |
+
downloaded = trafilatura.fetch_url(url)
|
53 |
+
if downloaded:
|
54 |
+
return trafilatura.extract(downloaded), None
|
55 |
+
else:
|
56 |
+
return None, "Could not download content from URL."
|
57 |
+
except Exception as e:
|
58 |
+
return None, f"Error extracting text: {e}"
|
59 |
+
|
60 |
+
# ... (rest of the functions: classify_text, classify_long_text, classify_sentences remain the same)
|
61 |
+
|
62 |
+
# Streamlit UI
|
63 |
+
st.title("Sentiment Classification Model by DEJAN (Medium Only)")
|
64 |
+
|
65 |
+
url = st.text_input("Enter Medium URL:")
|
66 |
+
|
67 |
+
if url:
|
68 |
+
text, error_message = get_text_from_url(url)
|
69 |
+
|
70 |
+
if error_message:
|
71 |
+
st.error(error_message) # Display error message
|
72 |
+
elif text:
|
73 |
+
# ... (rest of the analysis and display code remains the same)
|
74 |
+
scores, chunk_scores_list, chunks = classify_long_text(text)
|
75 |
+
scores_dict = {sentiment_labels[i]: scores[i] for i in range(len(sentiment_labels))}
|
76 |
+
|
77 |
+
# Ensure the exact order of labels in the graph
|
78 |
+
sentiment_order = [
|
79 |
+
"very positive", "positive", "somewhat positive",
|
80 |
+
"neutral",
|
81 |
+
"somewhat negative", "negative", "very negative"
|
82 |
+
]
|
83 |
+
ordered_scores_dict = OrderedDict((label, scores_dict[label]) for label in sentiment_order)
|
84 |
+
|
85 |
+
# Prepare the DataFrame and reindex
|
86 |
+
df = pd.DataFrame.from_dict(ordered_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
|
87 |
+
|
88 |
+
# Use Altair to plot the bar chart
|
89 |
+
chart = alt.Chart(df.reset_index()).mark_bar().encode(
|
90 |
+
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
|
91 |
+
y='Likelihood'
|
92 |
+
).properties(
|
93 |
+
width=600,
|
94 |
+
height=400
|
95 |
+
)
|
96 |
+
|
97 |
+
st.altair_chart(chart, use_container_width=True)
|
98 |
+
|
99 |
+
# Display each chunk and its own chart
|
100 |
+
for i, (chunk_scores, chunk) in enumerate(zip(chunk_scores_list, chunks)):
|
101 |
+
chunk_scores_dict = {sentiment_labels[j]: chunk_scores[j] for j in range(len(sentiment_labels))}
|
102 |
+
ordered_chunk_scores_dict = OrderedDict((label, chunk_scores_dict[label]) for label in sentiment_order)
|
103 |
+
df_chunk = pd.DataFrame.from_dict(ordered_chunk_scores_dict, orient='index', columns=['Likelihood']).reindex(sentiment_order)
|
104 |
+
|
105 |
+
chunk_chart = alt.Chart(df_chunk.reset_index()).mark_bar().encode(
|
106 |
+
x=alt.X('index', sort=sentiment_order, title='Sentiment'),
|
107 |
+
y='Likelihood'
|
108 |
+
).properties(
|
109 |
+
width=600,
|
110 |
+
height=400
|
111 |
+
)
|
112 |
+
|
113 |
+
st.write(f"Chunk {i + 1}:")
|
114 |
+
st.write(chunk)
|
115 |
+
st.altair_chart(chunk_chart, use_container_width=True)
|
116 |
+
|
117 |
+
# Sentence-level classification with background colors
|
118 |
+
st.write("Extracted Text with Sentiment Highlights:")
|
119 |
+
sentence_scores = classify_sentences(text)
|
120 |
+
for sentence, sentiment in sentence_scores:
|
121 |
+
bg_color = background_colors[sentiment]
|
122 |
+
st.markdown(f'<span style="background-color: {bg_color}">{sentence}</span>', unsafe_allow_html=True)
|
123 |
+
|
124 |
+
|
125 |
+
# No 'else' needed here, as the error message is already handled above.
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
requests
|
5 |
+
trafilatura
|
6 |
+
pandas
|
7 |
+
altair
|
8 |
+
nltk
|