Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import os
|
7 |
+
|
8 |
+
# 📌 1. Загружаем LLaMA 3
|
9 |
+
MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
12 |
+
|
13 |
+
# 📌 2. Загружаем Sentence Transformer для эмбеддингов
|
14 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
15 |
+
|
16 |
+
# 📌 3. Загружаем свою базу знаний
|
17 |
+
def load_documents():
|
18 |
+
knowledge_base = []
|
19 |
+
for file_name in os.listdir("files"):
|
20 |
+
file_path = os.path.join("files", file_name)
|
21 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
22 |
+
text = file.read()
|
23 |
+
knowledge_base.append(text)
|
24 |
+
return knowledge_base
|
25 |
+
|
26 |
+
documents = load_documents()
|
27 |
+
document_embeddings = embedder.encode(documents, convert_to_tensor=True)
|
28 |
+
|
29 |
+
# 📌 4. Создаем FAISS-индекс
|
30 |
+
index = faiss.IndexFlatL2(document_embeddings.shape[1])
|
31 |
+
index.add(document_embeddings.cpu().numpy())
|
32 |
+
|
33 |
+
# 📌 5. Функция поиска релевантной информации
|
34 |
+
def retrieve_relevant_info(query, top_k=2):
|
35 |
+
query_embedding = embedder.encode([query], convert_to_tensor=True)
|
36 |
+
query_embedding = query_embedding.cpu().numpy()
|
37 |
+
distances, indices = index.search(query_embedding, top_k)
|
38 |
+
retrieved_docs = [documents[idx] for idx in indices[0]]
|
39 |
+
return " ".join(retrieved_docs)
|
40 |
+
|
41 |
+
# 📌 6. Функция генерации ответа
|
42 |
+
def generate_response(query):
|
43 |
+
relevant_info = retrieve_relevant_info(query)
|
44 |
+
input_text = f"Context: {relevant_info}\nQuestion: {query}\nAnswer:"
|
45 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
46 |
+
outputs = model.generate(**inputs, max_length=200)
|
47 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
|
49 |
+
# 📌 7. Gradio-интерфейс
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=generate_response,
|
52 |
+
inputs=gr.Textbox(lines=2, placeholder="Введите ваш вопрос..."),
|
53 |
+
outputs=gr.Textbox(),
|
54 |
+
title="RAG с LLaMA 3",
|
55 |
+
description="Этот чатбот использует RAG (Retrieval-Augmented Generation) с LLaMA 3 и вашими документами."
|
56 |
+
)
|
57 |
+
|
58 |
+
interface.launch()
|