File size: 9,484 Bytes
68db483 f07bc5e 68db483 f07bc5e 68db483 cfca85e 68db483 cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e bf9e243 f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e cfca85e f07bc5e 68db483 f07bc5e cfca85e 68db483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "marimo",
# "matplotlib==3.10.1",
# "numpy==2.2.3",
# ]
# ///
import marimo
__generated_with = "0.11.20"
app = marimo.App()
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Finding $\pi$ in colliding blocks
One of the remarkable things about mathematical constants like $\pi$ is how frequently they arise in nature, in the most surprising of places.
Inspired by 3Blue1Brown, this marimo notebook shows how the number of collisions incurred in a particular system involving two blocks converges to the digits in $\pi$.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## The 3Blue1Brown video
If you haven't seen it, definitely check out the video that inspired this notebook!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.Html('<iframe width="700" height="400" src="https://www.youtube.com/embed/6dTyOl1fmDo?si=xl9v6Y8x2e3r3A9I" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>')
return
@app.cell(hide_code=True)
def _(mo):
slider = mo.ui.slider(start=0, stop=4, value=1, show_value=True)
return (slider,)
@app.cell(hide_code=True)
def _(mo, slider):
mo.md(f"Use this slider to control the weight of the heavier block: {slider}")
return
@app.cell(hide_code=True)
def _(mo, slider):
mo.md(rf"The heavier block weighs **$100^{{ {slider.value} }}$** kg.")
return
@app.cell(hide_code=True)
def _(mo):
run_button = mo.ui.run_button(label="Run simulation!")
run_button.right()
return (run_button,)
@app.cell
def _(run_button, simulate_collisions, slider):
if run_button.value:
mass_ratio = 100**slider.value
_, ani, collisions = simulate_collisions(
mass_ratio, total_time=15, dt=0.001
)
return ani, collisions, mass_ratio
@app.cell
def _(ani, mo, run_button):
video = None
if run_button.value:
with mo.status.spinner(title="Rendering collision video ..."):
video = mo.Html(ani.to_html5_video())
video
return (video,)
@app.cell
def _():
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.patches import Rectangle
return Rectangle, animation, np, plt
@app.cell
def _():
class Block:
def __init__(self, mass, velocity, position, size=1.0):
self.mass = mass
self.velocity = velocity
self.position = position
self.size = size
def update(self, dt):
self.position += self.velocity * dt
def collide(self, other):
# Calculate velocities after elastic collision
m1, m2 = self.mass, other.mass
v1, v2 = self.velocity, other.velocity
new_v1 = (m1 - m2) / (m1 + m2) * v1 + (2 * m2) / (m1 + m2) * v2
new_v2 = (2 * m1) / (m1 + m2) * v1 + (m2 - m1) / (m1 + m2) * v2
self.velocity = new_v1
other.velocity = new_v2
return 1 # Return 1 collision
return (Block,)
@app.cell
def check_collisions():
def check_collisions(small_block, big_block, wall_pos=0):
collisions = 0
# Check for collision between blocks
if small_block.position + small_block.size > big_block.position:
small_block.position = big_block.position - small_block.size
collisions += small_block.collide(big_block)
# Check for collision with the wall
if small_block.position < wall_pos:
small_block.position = wall_pos
small_block.velocity *= -1
collisions += 1
return collisions
return (check_collisions,)
@app.cell
def _(Block, check_collisions, create_animation):
def simulate_collisions(mass_ratio, total_time=15, dt=0.001, animate=True):
# Initialize blocks
small_block = Block(mass=1, velocity=0, position=2)
big_block = Block(mass=mass_ratio, velocity=-0.5, position=4)
# Simulation variables
time = 0
collision_count = 0
# For animation
times = []
small_positions = []
big_positions = []
collision_counts = []
# Run simulation
while time < total_time:
# Update positions
small_block.update(dt)
big_block.update(dt)
# Check for and handle collisions
new_collisions = check_collisions(small_block, big_block)
collision_count += new_collisions
# Store data for animation
times.append(time)
small_positions.append(small_block.position)
big_positions.append(big_block.position)
collision_counts.append(collision_count)
time += dt
print(f"Mass ratio: {mass_ratio}, Total collisions: {collision_count}")
if animate:
axis, ani = create_animation(
times, small_positions, big_positions, collision_counts, mass_ratio
)
else:
axis, ani = None
return axis, ani, collision_count
return (simulate_collisions,)
@app.cell
def _(Rectangle, animation, plt):
def create_animation(
times, small_positions, big_positions, collision_counts, mass_ratio
):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
# Setup for blocks visualization
ax1.set_xlim(-1, 10)
ax1.set_ylim(-1, 2)
ax1.set_xlabel("Position")
ax1.set_title(f"Block Collisions (Mass Ratio = {mass_ratio})")
wall = plt.Line2D([0, 0], [-1, 2], color="black", linewidth=3)
ax1.add_line(wall)
small_block = Rectangle((small_positions[0], 0), 1, 1, color="blue")
big_block = Rectangle((big_positions[0], 0), 1, 1, color="red")
ax1.add_patch(small_block)
ax1.add_patch(big_block)
# Add weight labels for each block
small_label = ax1.text(
small_positions[0] + 0.5,
1.2,
f"{1}kg",
ha="center",
va="center",
color="blue",
fontweight="bold",
)
big_label = ax1.text(
big_positions[0] + 0.5,
1.2,
f"{mass_ratio}kg",
ha="center",
va="center",
color="red",
fontweight="bold",
)
# Setup for collision count
ax2.set_xlim(0, times[-1])
# ax2.set_ylim(0, collision_counts[-1] * 1.1)
ax2.set_ylim(0, collision_counts[-1] * 1.1)
ax2.set_xlabel("Time")
ax2.set_ylabel("# Collisions:")
ax2.set_yscale("symlog")
(collision_line,) = ax2.plot([], [], "g-")
# Add text for collision count
collision_text = ax2.text(
0.02, 0.9, "", transform=ax2.transAxes, fontsize="x-large"
)
def init():
small_block.set_xy((small_positions[0], 0))
big_block.set_xy((big_positions[0], 0))
small_label.set_position((small_positions[0] + 0.5, 1.2))
big_label.set_position((big_positions[0] + 0.5, 1.2))
collision_line.set_data([], [])
collision_text.set_text("")
return small_block, big_block, collision_line, collision_text
frame_step = 300
def animate(i):
# Speed up animation but ensure we reach the final frame
frame_index = min(i * frame_step, len(times) - 1)
small_block.set_xy((small_positions[frame_index], 0))
big_block.set_xy((big_positions[frame_index], 0))
# Update the weight labels to follow the blocks
small_label.set_position((small_positions[frame_index] + 0.5, 1.2))
big_label.set_position((big_positions[frame_index] + 0.5, 1.2))
# Show data up to the current frame
collision_line.set_data(
times[: frame_index + 1], collision_counts[: frame_index + 1]
)
# For the last frame, show the final collision count
if frame_index >= len(times) - 1:
collision_text.set_text(
f"# Collisions: {collision_counts[-1]}"
)
else:
collision_text.set_text(
f"# Collisions: {collision_counts[frame_index]}"
)
return (
small_block,
big_block,
small_label,
big_label,
collision_line,
collision_text,
)
plt.tight_layout()
frames = max(1, len(times) // frame_step) # Ensure at least 1 frame
ani = animation.FuncAnimation(
fig,
animate,
frames=frames + 1, # +1 to ensure we reach the end
init_func=init,
blit=True,
interval=30,
)
plt.tight_layout()
return plt.gca(), ani
# Uncomment to save animation
# ani.save('pi_collisions.mp4', writer='ffmpeg', fps=30)
return (create_animation,)
if __name__ == "__main__":
app.run() |