File size: 9,734 Bytes
68db483
f07bc5e
68db483
 
f07bc5e
 
68db483
 
cfca85e
68db483
cfca85e
f07bc5e
 
 
 
 
 
 
 
cfca85e
 
 
f07bc5e
cfca85e
f07bc5e
 
cfca85e
f07bc5e
cfca85e
f07bc5e
59d13fe
 
f07bc5e
 
 
cfca85e
 
f07bc5e
 
c250e6a
f07bc5e
cfca85e
2a1cd49
 
 
 
 
cfca85e
f07bc5e
 
cfca85e
 
 
f07bc5e
 
 
 
cfca85e
f07bc5e
 
 
 
 
 
cfca85e
 
 
f07bc5e
 
 
 
 
 
 
cfca85e
f07bc5e
 
 
 
 
 
 
 
 
cfca85e
2a1cd49
 
 
 
 
 
6a4b4b1
2a1cd49
 
 
 
 
 
 
6a4b4b1
 
 
 
 
 
2a1cd49
cfca85e
2a1cd49
cfca85e
f07bc5e
68db483
f07bc5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfca85e
 
 
68db483
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# /// script
# requires-python = ">=3.13"
# dependencies = [
#     "marimo",
#     "matplotlib==3.10.1",
#     "numpy==2.2.3",
# ]
# ///

import marimo

__generated_with = "0.11.20"
app = marimo.App()


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Finding $\pi$ in colliding blocks

        One of the remarkable things about mathematical constants like $\pi$ is how frequently they arise in nature, in the most surprising of places.

        Inspired by 3Blue1Brown, this marimo notebook shows how the number of collisions incurred in a particular system involving two blocks converges to the digits in $\pi$.

        **Tip!**: Use the menu in the top right to reveal the notebook's code.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    slider = mo.ui.slider(start=0, stop=3, value=3, show_value=True)
    return (slider,)

@app.cell(hide_code=True)
def _(mo, slider):
    mo.md("## Simulate!")
    return
    
@app.cell(hide_code=True)
def _(mo, slider):
    mo.md(f"Use this slider to control the weight of the heavier block: {slider}")
    return


@app.cell(hide_code=True)
def _(mo, slider):
    mo.md(rf"The heavier block weighs **$100^{{ {slider.value} }}$** kg.")
    return


@app.cell(hide_code=True)
def _(mo):
    run_button = mo.ui.run_button(label="Run simulation!")
    run_button.right()
    return (run_button,)


@app.cell
def _(run_button, simulate_collisions, slider):
    if run_button.value:
        mass_ratio = 100**slider.value
        _, ani, collisions = simulate_collisions(
            mass_ratio, total_time=15, dt=0.001
        )
    return ani, collisions, mass_ratio


@app.cell
def _(ani, mo, run_button):
    video = None
    if run_button.value:
        with mo.status.spinner(title="Rendering collision video ..."):
            video = mo.Html(ani.to_html5_video())
    video
    return (video,)

@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## The 3Blue1Brown video

        If you haven't seen it, definitely check out the video that inspired this notebook:
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.accordion(
    {
        "🎥 Watch the video": mo.Html(
            '<iframe width="700" height="400" src="https://www.youtube.com/embed/6dTyOl1fmDo?si=xl9v6Y8x2e3r3A9I" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>'
        )
    })
    return

    
@app.cell
def _():
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.animation as animation
    from matplotlib.patches import Rectangle
    return Rectangle, animation, np, plt


@app.cell
def _():
    class Block:
        def __init__(self, mass, velocity, position, size=1.0):
            self.mass = mass
            self.velocity = velocity
            self.position = position
            self.size = size

        def update(self, dt):
            self.position += self.velocity * dt

        def collide(self, other):
            # Calculate velocities after elastic collision
            m1, m2 = self.mass, other.mass
            v1, v2 = self.velocity, other.velocity

            new_v1 = (m1 - m2) / (m1 + m2) * v1 + (2 * m2) / (m1 + m2) * v2
            new_v2 = (2 * m1) / (m1 + m2) * v1 + (m2 - m1) / (m1 + m2) * v2

            self.velocity = new_v1
            other.velocity = new_v2

            return 1  # Return 1 collision
    return (Block,)


@app.cell
def check_collisions():
    def check_collisions(small_block, big_block, wall_pos=0):
        collisions = 0

        # Check for collision between blocks
        if small_block.position + small_block.size > big_block.position:
            small_block.position = big_block.position - small_block.size
            collisions += small_block.collide(big_block)

        # Check for collision with the wall
        if small_block.position < wall_pos:
            small_block.position = wall_pos
            small_block.velocity *= -1
            collisions += 1

        return collisions
    return (check_collisions,)


@app.cell
def _(Block, check_collisions, create_animation):
    def simulate_collisions(mass_ratio, total_time=15, dt=0.001, animate=True):
        # Initialize blocks
        small_block = Block(mass=1, velocity=0, position=2)
        big_block = Block(mass=mass_ratio, velocity=-0.5, position=4)

        # Simulation variables
        time = 0
        collision_count = 0

        # For animation
        times = []
        small_positions = []
        big_positions = []
        collision_counts = []

        # Run simulation
        while time < total_time:
            # Update positions
            small_block.update(dt)
            big_block.update(dt)

            # Check for and handle collisions
            new_collisions = check_collisions(small_block, big_block)
            collision_count += new_collisions

            # Store data for animation
            times.append(time)
            small_positions.append(small_block.position)
            big_positions.append(big_block.position)
            collision_counts.append(collision_count)

            time += dt


        print(f"Mass ratio: {mass_ratio}, Total collisions: {collision_count}")

        if animate:
            axis, ani = create_animation(
                times, small_positions, big_positions, collision_counts, mass_ratio
            )
        else:
            axis, ani = None

        return axis, ani, collision_count
    return (simulate_collisions,)


@app.cell
def _(Rectangle, animation, plt):
    def create_animation(
        times, small_positions, big_positions, collision_counts, mass_ratio
    ):
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

        # Setup for blocks visualization
        ax1.set_xlim(-1, 10)
        ax1.set_ylim(-1, 2)
        ax1.set_xlabel("Position")
        ax1.set_title(f"Block Collisions (Mass Ratio = {mass_ratio})")
        wall = plt.Line2D([0, 0], [-1, 2], color="black", linewidth=3)
        ax1.add_line(wall)

        small_block = Rectangle((small_positions[0], 0), 1, 1, color="blue")
        big_block = Rectangle((big_positions[0], 0), 1, 1, color="red")
        ax1.add_patch(small_block)
        ax1.add_patch(big_block)

        # Add weight labels for each block
        small_label = ax1.text(
            small_positions[0] + 0.5,
            1.2,
            f"{1}kg",
            ha="center",
            va="center",
            color="blue",
            fontweight="bold",
        )
        big_label = ax1.text(
            big_positions[0] + 0.5,
            1.2,
            f"{mass_ratio}kg",
            ha="center",
            va="center",
            color="red",
            fontweight="bold",
        )

        # Setup for collision count
        ax2.set_xlim(0, times[-1])
        # ax2.set_ylim(0, collision_counts[-1] * 1.1)
        ax2.set_ylim(0, collision_counts[-1] * 1.1)
        ax2.set_xlabel("Time")
        ax2.set_ylabel("# Collisions:")
        ax2.set_yscale("symlog")
        (collision_line,) = ax2.plot([], [], "g-")

        # Add text for collision count
        collision_text = ax2.text(
            0.02, 0.9, "", transform=ax2.transAxes, fontsize="x-large"
        )

        def init():
            small_block.set_xy((small_positions[0], 0))
            big_block.set_xy((big_positions[0], 0))
            small_label.set_position((small_positions[0] + 0.5, 1.2))
            big_label.set_position((big_positions[0] + 0.5, 1.2))
            collision_line.set_data([], [])
            collision_text.set_text("")
            return small_block, big_block, collision_line, collision_text

        frame_step = 300

        def animate(i):
            # Speed up animation but ensure we reach the final frame
            frame_index = min(i * frame_step, len(times) - 1)

            small_block.set_xy((small_positions[frame_index], 0))
            big_block.set_xy((big_positions[frame_index], 0))

            # Update the weight labels to follow the blocks
            small_label.set_position((small_positions[frame_index] + 0.5, 1.2))
            big_label.set_position((big_positions[frame_index] + 0.5, 1.2))

            # Show data up to the current frame
            collision_line.set_data(
                times[: frame_index + 1], collision_counts[: frame_index + 1]
            )

            # For the last frame, show the final collision count
            if frame_index >= len(times) - 1:
                collision_text.set_text(
                    f"# Collisions: {collision_counts[-1]}"
                )
            else:
                collision_text.set_text(
                    f"# Collisions: {collision_counts[frame_index]}"
                )

            return (
                small_block,
                big_block,
                small_label,
                big_label,
                collision_line,
                collision_text,
            )

        plt.tight_layout()

        frames = max(1, len(times) // frame_step)  # Ensure at least 1 frame
        ani = animation.FuncAnimation(
            fig,
            animate,
            frames=frames + 1,  # +1 to ensure we reach the end
            init_func=init,
            blit=True,
            interval=30,
        )

        plt.tight_layout()
        return plt.gca(), ani

        # Uncomment to save animation
        # ani.save('pi_collisions.mp4', writer='ffmpeg', fps=30)
    return (create_animation,)


if __name__ == "__main__":
    app.run()