File size: 7,087 Bytes
36c6cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
277b10b
36c6cb2
277b10b
36c6cb2
 
277b10b
 
 
36c6cb2
 
277b10b
 
 
36c6cb2
 
 
277b10b
36c6cb2
 
 
277b10b
 
36c6cb2
 
 
 
 
277b10b
 
36c6cb2
 
 
 
 
277b10b
 
36c6cb2
 
 
277b10b
36c6cb2
 
 
 
 
 
 
277b10b
 
 
36c6cb2
 
 
 
 
277b10b
 
36c6cb2
 
 
 
277b10b
36c6cb2
 
 
277b10b
 
36c6cb2
 
 
 
 
 
277b10b
 
36c6cb2
 
 
 
 
 
 
 
 
 
277b10b
36c6cb2
 
277b10b
 
36c6cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277b10b
 
 
 
36c6cb2
 
277b10b
 
 
 
36c6cb2
 
 
 
 
 
 
277b10b
 
 
36c6cb2
 
 
277b10b
 
 
36c6cb2
 
277b10b
 
 
 
36c6cb2
 
 
277b10b
 
36c6cb2
 
 
 
 
277b10b
 
36c6cb2
 
 
277b10b
36c6cb2
 
277b10b
36c6cb2
 
277b10b
 
36c6cb2
 
 
277b10b
36c6cb2
277b10b
36c6cb2
 
 
 
 
 
 
277b10b
 
36c6cb2
 
 
 
277b10b
 
36c6cb2
 
 
 
277b10b
 
36c6cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
277b10b
 
36c6cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277b10b
 
36c6cb2
 
 
 
277b10b
36c6cb2
 
277b10b
36c6cb2
 
 
 
 
 
 
 
277b10b
36c6cb2
 
277b10b
 
36c6cb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277b10b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# /// script
# requires-python = "==3.10"
# dependencies = [
#     "marimo",
#     "polars==1.23.0",
#     "sentence-transformers==3.4.1",
#     "umap-learn==0.5.7",
#     "llvmlite==0.44.0",
#     "altair==5.5.0",
#     "scikit-learn==1.6.1",
#     "numpy==2.1.3",
#     "mohtml==0.1.2",
# ]
# ///

import marimo

__generated_with = "0.11.9"
app = marimo.App(width="medium")


@app.cell
def _(mo):
    mo.md("""### Bulk labelling demo""")
    return


@app.cell
def _(mo, use_default_switch):
    mo.stop(use_default_switch.value)

    uploaded_file = mo.ui.file(kind="area")
    uploaded_file
    return (uploaded_file,)


@app.cell
def _(mo):
    use_default_switch = mo.ui.switch(False, label="Use default dataset")
    use_default_switch
    return (use_default_switch,)


@app.cell
def _(mo):
    pos_label = mo.ui.text("pos", placeholder="positive label name")
    neg_label = mo.ui.text("neg", placeholder="negative label name")
    return neg_label, pos_label


@app.cell
def _(mo, pl, uploaded_f7ile, uploaded_file, use_default_switch):
    mo.stop(not use_default_switch.value and len(uploaded_file.value) == 0 , mo.md("**Submit a dataset or use default one to continue.**"))

    if use_default_switch.value:
        df = pl.read_csv("spam.csv")
    else:
        df = pl.read_csv(uploaded_f7ile.value[0].contents)
    
    texts = df["text"].to_list()
    return df, texts


@app.cell
def _(SentenceTransformer, mo, texts):
    with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner:
        tfm = SentenceTransformer("all-MiniLM-L6-v2")
        X = tfm.encode(texts)
    return X, tfm


@app.cell
def _(X, mo):
    with mo.status.spinner(subtitle="Running UMAP ...") as _spinner:
        from umap import UMAP

        umap_tfm = UMAP()
        X_tfm = umap_tfm.fit_transform(X)
    return UMAP, X_tfm, umap_tfm


@app.cell
def _(add_label, mo, neg_label, pos_label, undo):
    btn_spam = mo.ui.button(label=f"Annotate {neg_label.value}", on_click=lambda d: add_label(neg_label.value))
    btn_ham = mo.ui.button(label=f"Annotate {pos_label.value}", on_click=lambda d: add_label(pos_label.value))
    btn_undo = mo.ui.button(label="Undo", on_click=lambda d: undo())
    return btn_ham, btn_spam, btn_undo


@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
    def add_label(lab):
        current_labels = get_label()
        if lab == neg_label.value: 
            new_ham = list(set(current_labels[pos_label.value]).difference(chart.value["index"]))
            new_spam = list(set(current_labels[neg_label.value]).union(chart.value["index"]))
        if lab == pos_label.value:
            new_ham = list(set(current_labels[pos_label.value]).union(chart.value["index"]))
            new_spam = list(set(current_labels[neg_label.value]).difference(chart.value["index"]))

        set_label({neg_label.value: new_spam, pos_label.value: new_ham})
    return (add_label,)


@app.cell
def _(
    br,
    btn_ham,
    btn_spam,
    btn_undo,
    chart,
    form,
    json_download,
    mo,
    neg_label,
    pos_label,
    switch,
):
    mo.vstack([
        mo.md("Assign label names"), 
        mo.hstack([pos_label, neg_label]),
        mo.md("Explore the data"),
        mo.hstack([btn_ham, btn_spam, btn_undo, switch, json_download]),
        br(),
        form if switch.value else "", 
        br() if switch.value else "",
        chart
    ])
    return


@app.cell
def _(chart):
    chart.value["text"]
    return


@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
    def undo():
        current_labels = get_label()
        new_spam = set(current_labels[neg_label.value]).difference(chart.value["index"])
        new_ham = set(current_labels[pos_label.value]).difference(chart.value["index"])
        set_label({neg_label.value: list(new_spam), pos_label.value: list(new_ham)})
    return (undo,)


@app.cell
def _():
    from mohtml import br
    return (br,)


@app.cell
def _(get_label):
    get_label()
    return


@app.cell
def _(mo, neg_label, pos_label):
    get_label, set_label = mo.state({pos_label.value: [], neg_label.value: []})
    return get_label, set_label


@app.cell
def _(mo):
    text_input = mo.ui.text_area(label="Reference sentences")
    form = mo.md("""{text_input}""").batch(text_input=text_input).form()
    return form, text_input


@app.cell
def _(df_emb, labels, mo):
    from collections import Counter

    with mo.status.spinner(subtitle="Starting UI ...") as _spinner:
        df_emb

    Counter(labels)
    return (Counter,)


@app.cell
def _(df_emb, mo, pl):
    import json

    data = df_emb.filter(pl.col("label") != "unlabeled").select("text", "label").to_dicts()

    json_download = mo.download(
        data=json.dumps(data).encode("utf-8"),
        filename="data.json",
        mimetype="application/json",
        label="Download JSON",
    )
    return data, json, json_download


@app.cell
def _(df_emb, mo, scatter):
    chart = mo.ui.altair_chart(scatter(df_emb))
    return (chart,)


@app.cell
def _(mo):
    switch = mo.ui.switch(False, label="Use search")
    return (switch,)


@app.cell
def _(alt, neg_label, pos_label, switch):
    def scatter(df):
        return (alt.Chart(df)
        .mark_circle()
        .encode(
            x=alt.X("x:Q"),
            y=alt.Y("y:Q"),
            color=alt.Color("sim:Q") if switch.value else alt.Color("label:N", scale=alt.Scale(
               domain=['unlabeled', pos_label.value, neg_label.value],
               range=['steelblue', 'green', 'red']
            ))
        ).properties(width=500, height=500))
    return (scatter,)


@app.cell
def _(
    X,
    X_tfm,
    cosine_similarity,
    form,
    get_label,
    neg_label,
    np,
    pl,
    pos_label,
    texts,
    tfm,
):
    df_emb = (
        pl.DataFrame({
            "x": X_tfm[:, 0], 
            "y": X_tfm[:, 1], 
            "index": range(X.shape[0]), 
            "text": texts
        }).with_columns(sim=pl.lit(1))
    )

    if form.value:
        query = tfm.encode([form.value["text_input"]])
        similarity = cosine_similarity(query, X)[0]
        df_emb = df_emb.with_columns(sim=similarity)

    spam = set(get_label()[neg_label.value])
    ham = set(get_label()[pos_label.value])

    labels = []
    for i in range(df_emb.shape[0]):
        if i in spam:
            labels.append(neg_label.value)
        elif i in ham:
            labels.append(pos_label.value)
        else:
            labels.append("unlabeled")

    df_emb = df_emb.with_columns(label=np.array(labels))
    return df_emb, ham, i, labels, query, similarity, spam


@app.cell
def _():
    import marimo as mo
    import polars as pl
    from sentence_transformers import SentenceTransformer
    import altair as alt
    import numpy as np
    from sklearn.metrics.pairwise import cosine_similarity
    from sklearn.linear_model import LogisticRegression
    return (
        LogisticRegression,
        SentenceTransformer,
        alt,
        cosine_similarity,
        mo,
        np,
        pl,
    )


if __name__ == "__main__":
    app.run()