Spaces:
Running
Running
File size: 7,328 Bytes
36c6cb2 d3e9851 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 a2cb3cf 277b10b 36c6cb2 277b10b 36c6cb2 d3e9851 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 d3e9851 277b10b 36c6cb2 d3e9851 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b 36c6cb2 277b10b d3e9851 36c6cb2 d3e9851 277b10b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# /// script
# requires-python = "==3.12"
# dependencies = [
# "marimo",
# "polars==1.23.0",
# "sentence-transformers==3.4.1",
# "umap-learn==0.5.7",
# "llvmlite==0.44.0",
# "altair==5.5.0",
# "scikit-learn==1.6.1",
# "numpy==2.1.3",
# "mohtml==0.1.2",
# ]
# ///
import marimo
__generated_with = "0.11.9"
app = marimo.App()
@app.cell
def _(mo):
mo.md("""### Bulk labelling demo""")
return
@app.cell
def _(mo, use_default_switch):
uploaded_file = mo.ui.file(kind="area") if not use_default_switch.value else None
uploaded_file
return (uploaded_file,)
@app.cell
def _(mo):
use_default_switch = mo.ui.switch(False, label="Use default dataset")
use_default_switch
return (use_default_switch,)
@app.cell
def _(mo):
pos_label = mo.ui.text("pos", placeholder="positive label name")
neg_label = mo.ui.text("neg", placeholder="negative label name")
return neg_label, pos_label
@app.cell
def _(uploaded_file, use_default_switch):
should_stop = not use_default_switch.value and len(uploaded_file.value) == 0
return (should_stop,)
@app.cell
def _(mo, pl, should_stop, uploaded_file, use_default_switch):
mo.stop(should_stop , mo.md("**Submit a dataset or use default one to continue.**"))
if use_default_switch.value:
df = pl.read_csv("spam.csv")
else:
df = pl.read_csv(uploaded_file.value[0].contents)
texts = df["text"].to_list()
return df, texts
@app.cell
def _(SentenceTransformer, mo, texts):
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner:
tfm = SentenceTransformer("all-MiniLM-L6-v2")
X = tfm.encode(texts)
return X, tfm
@app.cell
def _(X, mo):
with mo.status.spinner(subtitle="Running UMAP ...") as _spinner:
from umap import UMAP
umap_tfm = UMAP()
X_tfm = umap_tfm.fit_transform(X)
return UMAP, X_tfm, umap_tfm
@app.cell
def _(add_label, mo, neg_label, pos_label, undo):
btn_spam = mo.ui.button(label=f"Annotate {neg_label.value}", on_click=lambda d: add_label(neg_label.value))
btn_ham = mo.ui.button(label=f"Annotate {pos_label.value}", on_click=lambda d: add_label(pos_label.value))
btn_undo = mo.ui.button(label="Undo", on_click=lambda d: undo())
return btn_ham, btn_spam, btn_undo
@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
def add_label(lab):
current_labels = get_label()
if lab == neg_label.value:
new_ham = list(set(current_labels[pos_label.value]).difference(chart.value["index"]))
new_spam = list(set(current_labels[neg_label.value]).union(chart.value["index"]))
if lab == pos_label.value:
new_ham = list(set(current_labels[pos_label.value]).union(chart.value["index"]))
new_spam = list(set(current_labels[neg_label.value]).difference(chart.value["index"]))
set_label({neg_label.value: new_spam, pos_label.value: new_ham})
return (add_label,)
@app.cell
def _(
br,
btn_ham,
btn_spam,
btn_undo,
chart,
form,
json_download,
mo,
neg_label,
pos_label,
switch,
):
mo.vstack([
mo.md("Assign label names"),
mo.hstack([pos_label, neg_label]),
mo.md("Explore the data"),
mo.hstack([btn_ham, btn_spam, btn_undo, switch, json_download]),
br(),
form if switch.value else "",
br() if switch.value else "",
chart
])
return
@app.cell
def _(chart):
chart.value["text"]
return
@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
def undo():
current_labels = get_label()
new_spam = set(current_labels[neg_label.value]).difference(chart.value["index"])
new_ham = set(current_labels[pos_label.value]).difference(chart.value["index"])
set_label({neg_label.value: list(new_spam), pos_label.value: list(new_ham)})
return (undo,)
@app.cell
def _():
from mohtml import br
return (br,)
@app.cell
def _(mo, neg_label, pos_label):
get_label, set_label = mo.state({pos_label.value: [], neg_label.value: []})
return get_label, set_label
@app.cell
def _(mo):
text_input = mo.ui.text_area(label="Reference sentences")
form = mo.md("""{text_input}""").batch(text_input=text_input).form()
return form, text_input
@app.cell
def _(df_emb, labels, mo):
from collections import Counter
with mo.status.spinner(subtitle="Starting UI ...") as _spinner:
df_emb
Counter(labels)
return (Counter,)
@app.cell
def _(df_emb, mo, pl):
import json
data = df_emb.filter(pl.col("label") != "unlabeled").select("text", "label").to_dicts()
json_download = mo.download(
data=json.dumps(data).encode("utf-8"),
filename="data.json",
mimetype="application/json",
label="Download JSON",
)
return data, json, json_download
@app.cell
def _(df_emb, mo, scatter):
chart = mo.ui.altair_chart(scatter(df_emb))
return (chart,)
@app.cell
def _(mo):
switch = mo.ui.switch(False, label="Use search")
return (switch,)
@app.cell
def _(alt, neg_label, pos_label, switch):
def scatter(df):
return (alt.Chart(df)
.mark_circle()
.encode(
x=alt.X("x:Q"),
y=alt.Y("y:Q"),
color=alt.Color("sim:Q") if switch.value else alt.Color("label:N", scale=alt.Scale(
domain=['unlabeled', pos_label.value, neg_label.value],
range=['steelblue', 'green', 'red']
))
).properties(width=500, height=500))
return (scatter,)
@app.cell
def _(
X,
X_tfm,
cosine_similarity,
form,
get_label,
neg_label,
np,
pl,
pos_label,
texts,
tfm,
):
df_emb = (
pl.DataFrame({
"x": X_tfm[:, 0],
"y": X_tfm[:, 1],
"index": range(X.shape[0]),
"text": texts
}).with_columns(sim=pl.lit(1))
)
if form.value:
query = tfm.encode([form.value["text_input"]])
similarity = cosine_similarity(query, X)[0]
df_emb = df_emb.with_columns(sim=similarity)
spam = set(get_label()[neg_label.value])
ham = set(get_label()[pos_label.value])
labels = []
for i in range(df_emb.shape[0]):
if i in spam:
labels.append(neg_label.value)
elif i in ham:
labels.append(pos_label.value)
else:
labels.append("unlabeled")
df_emb = df_emb.with_columns(label=np.array(labels))
return df_emb, ham, i, labels, query, similarity, spam
@app.cell
def _(mo):
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner:
import polars as pl
import altair as alt
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.linear_model import LogisticRegression
return LogisticRegression, alt, cosine_similarity, np, pl
@app.cell
def _(mo):
with mo.status.spinner(subtitle="Loading SBERT ...") as _spinner:
from sentence_transformers import SentenceTransformer
return (SentenceTransformer,)
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|