fast-bulk / app.py
koaning's picture
go
d3e9851
raw
history blame
7.39 kB
# /// script
# requires-python = "==3.12"
# dependencies = [
# "marimo",
# "polars==1.23.0",
# "sentence-transformers==3.4.1",
# "umap-learn==0.5.7",
# "llvmlite==0.44.0",
# "altair==5.5.0",
# "scikit-learn==1.6.1",
# "numpy==2.1.3",
# "mohtml==0.1.2",
# ]
# ///
import marimo
__generated_with = "0.11.9"
app = marimo.App(width="medium", layout_file="layouts/app.grid.json")
@app.cell
def _(mo):
mo.md("""### Bulk labelling demo""")
return
@app.cell
def _(mo, use_default_switch):
uploaded_file = mo.ui.file(kind="area") if not use_default_switch.value else None
uploaded_file
return (uploaded_file,)
@app.cell
def _(mo):
use_default_switch = mo.ui.switch(False, label="Use default dataset")
use_default_switch
return (use_default_switch,)
@app.cell
def _(mo):
pos_label = mo.ui.text("pos", placeholder="positive label name")
neg_label = mo.ui.text("neg", placeholder="negative label name")
return neg_label, pos_label
@app.cell
def _(uploaded_file, use_default_switch):
should_stop = not use_default_switch.value and len(uploaded_file.value) == 0
return (should_stop,)
@app.cell
def _(mo, pl, should_stop, uploaded_file, use_default_switch):
mo.stop(should_stop , mo.md("**Submit a dataset or use default one to continue.**"))
if use_default_switch.value:
df = pl.read_csv("spam.csv")
else:
df = pl.read_csv(uploaded_file.value[0].contents)
texts = df["text"].to_list()
return df, texts
@app.cell
def _(SentenceTransformer, mo, texts):
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner:
tfm = SentenceTransformer("all-MiniLM-L6-v2")
X = tfm.encode(texts)
return X, tfm
@app.cell
def _(X, mo):
with mo.status.spinner(subtitle="Running UMAP ...") as _spinner:
from umap import UMAP
umap_tfm = UMAP()
X_tfm = umap_tfm.fit_transform(X)
return UMAP, X_tfm, umap_tfm
@app.cell
def _(add_label, mo, neg_label, pos_label, undo):
btn_spam = mo.ui.button(label=f"Annotate {neg_label.value}", on_click=lambda d: add_label(neg_label.value))
btn_ham = mo.ui.button(label=f"Annotate {pos_label.value}", on_click=lambda d: add_label(pos_label.value))
btn_undo = mo.ui.button(label="Undo", on_click=lambda d: undo())
return btn_ham, btn_spam, btn_undo
@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
def add_label(lab):
current_labels = get_label()
if lab == neg_label.value:
new_ham = list(set(current_labels[pos_label.value]).difference(chart.value["index"]))
new_spam = list(set(current_labels[neg_label.value]).union(chart.value["index"]))
if lab == pos_label.value:
new_ham = list(set(current_labels[pos_label.value]).union(chart.value["index"]))
new_spam = list(set(current_labels[neg_label.value]).difference(chart.value["index"]))
set_label({neg_label.value: new_spam, pos_label.value: new_ham})
return (add_label,)
@app.cell
def _(
br,
btn_ham,
btn_spam,
btn_undo,
chart,
form,
json_download,
mo,
neg_label,
pos_label,
switch,
):
mo.vstack([
mo.md("Assign label names"),
mo.hstack([pos_label, neg_label]),
mo.md("Explore the data"),
mo.hstack([btn_ham, btn_spam, btn_undo, switch, json_download]),
br(),
form if switch.value else "",
br() if switch.value else "",
chart
])
return
@app.cell
def _(chart):
chart.value["text"]
return
@app.cell
def _(chart, get_label, neg_label, pos_label, set_label):
def undo():
current_labels = get_label()
new_spam = set(current_labels[neg_label.value]).difference(chart.value["index"])
new_ham = set(current_labels[pos_label.value]).difference(chart.value["index"])
set_label({neg_label.value: list(new_spam), pos_label.value: list(new_ham)})
return (undo,)
@app.cell
def _():
from mohtml import br
return (br,)
@app.cell
def _(mo, neg_label, pos_label):
get_label, set_label = mo.state({pos_label.value: [], neg_label.value: []})
return get_label, set_label
@app.cell
def _(mo):
text_input = mo.ui.text_area(label="Reference sentences")
form = mo.md("""{text_input}""").batch(text_input=text_input).form()
return form, text_input
@app.cell
def _(df_emb, labels, mo):
from collections import Counter
with mo.status.spinner(subtitle="Starting UI ...") as _spinner:
df_emb
Counter(labels)
return (Counter,)
@app.cell
def _(df_emb, mo, pl):
import json
data = df_emb.filter(pl.col("label") != "unlabeled").select("text", "label").to_dicts()
json_download = mo.download(
data=json.dumps(data).encode("utf-8"),
filename="data.json",
mimetype="application/json",
label="Download JSON",
)
return data, json, json_download
@app.cell
def _(df_emb, mo, scatter):
chart = mo.ui.altair_chart(scatter(df_emb))
return (chart,)
@app.cell
def _(mo):
switch = mo.ui.switch(False, label="Use search")
switch
return (switch,)
@app.cell
def _(alt, neg_label, pos_label, switch):
def scatter(df):
return (alt.Chart(df)
.mark_circle()
.encode(
x=alt.X("x:Q"),
y=alt.Y("y:Q"),
color=alt.Color("sim:Q") if switch.value else alt.Color("label:N", scale=alt.Scale(
domain=['unlabeled', pos_label.value, neg_label.value],
range=['steelblue', 'green', 'red']
))
).properties(width=500, height=500))
return (scatter,)
@app.cell
def _(
X,
X_tfm,
cosine_similarity,
form,
get_label,
neg_label,
np,
pl,
pos_label,
texts,
tfm,
):
df_emb = (
pl.DataFrame({
"x": X_tfm[:, 0],
"y": X_tfm[:, 1],
"index": range(X.shape[0]),
"text": texts
}).with_columns(sim=pl.lit(1))
)
if form.value:
query = tfm.encode([form.value["text_input"]])
similarity = cosine_similarity(query, X)[0]
df_emb = df_emb.with_columns(sim=similarity)
spam = set(get_label()[neg_label.value])
ham = set(get_label()[pos_label.value])
labels = []
for i in range(df_emb.shape[0]):
if i in spam:
labels.append(neg_label.value)
elif i in ham:
labels.append(pos_label.value)
else:
labels.append("unlabeled")
df_emb = df_emb.with_columns(label=np.array(labels))
return df_emb, ham, i, labels, query, similarity, spam
@app.cell
def _(mo):
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner:
import polars as pl
import altair as alt
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.linear_model import LogisticRegression
return LogisticRegression, alt, cosine_similarity, np, pl
@app.cell
def _(mo):
with mo.status.spinner(subtitle="Loading SBERT ...") as _spinner:
from sentence_transformers import SentenceTransformer
return (SentenceTransformer,)
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
return
if __name__ == "__main__":
app.run()