Spaces:
Running
Running
# /// script | |
# requires-python = "==3.12" | |
# dependencies = [ | |
# "marimo", | |
# "polars==1.23.0", | |
# "sentence-transformers==3.4.1", | |
# "umap-learn==0.5.7", | |
# "llvmlite==0.44.0", | |
# "altair==5.5.0", | |
# "scikit-learn==1.6.1", | |
# "numpy==2.1.3", | |
# "mohtml==0.1.2", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.11.9" | |
app = marimo.App(width="medium", layout_file="layouts/app.grid.json") | |
def _(mo): | |
mo.md("""### Bulk labelling demo""") | |
return | |
def _(mo, use_default_switch): | |
uploaded_file = mo.ui.file(kind="area") if not use_default_switch.value else None | |
uploaded_file | |
return (uploaded_file,) | |
def _(mo): | |
use_default_switch = mo.ui.switch(False, label="Use default dataset") | |
use_default_switch | |
return (use_default_switch,) | |
def _(mo): | |
pos_label = mo.ui.text("pos", placeholder="positive label name") | |
neg_label = mo.ui.text("neg", placeholder="negative label name") | |
return neg_label, pos_label | |
def _(uploaded_file, use_default_switch): | |
should_stop = not use_default_switch.value and len(uploaded_file.value) == 0 | |
return (should_stop,) | |
def _(mo, pl, should_stop, uploaded_file, use_default_switch): | |
mo.stop(should_stop , mo.md("**Submit a dataset or use default one to continue.**")) | |
if use_default_switch.value: | |
df = pl.read_csv("spam.csv") | |
else: | |
df = pl.read_csv(uploaded_file.value[0].contents) | |
texts = df["text"].to_list() | |
return df, texts | |
def _(SentenceTransformer, mo, texts): | |
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner: | |
tfm = SentenceTransformer("all-MiniLM-L6-v2") | |
X = tfm.encode(texts) | |
return X, tfm | |
def _(X, mo): | |
with mo.status.spinner(subtitle="Running UMAP ...") as _spinner: | |
from umap import UMAP | |
umap_tfm = UMAP() | |
X_tfm = umap_tfm.fit_transform(X) | |
return UMAP, X_tfm, umap_tfm | |
def _(add_label, mo, neg_label, pos_label, undo): | |
btn_spam = mo.ui.button(label=f"Annotate {neg_label.value}", on_click=lambda d: add_label(neg_label.value)) | |
btn_ham = mo.ui.button(label=f"Annotate {pos_label.value}", on_click=lambda d: add_label(pos_label.value)) | |
btn_undo = mo.ui.button(label="Undo", on_click=lambda d: undo()) | |
return btn_ham, btn_spam, btn_undo | |
def _(chart, get_label, neg_label, pos_label, set_label): | |
def add_label(lab): | |
current_labels = get_label() | |
if lab == neg_label.value: | |
new_ham = list(set(current_labels[pos_label.value]).difference(chart.value["index"])) | |
new_spam = list(set(current_labels[neg_label.value]).union(chart.value["index"])) | |
if lab == pos_label.value: | |
new_ham = list(set(current_labels[pos_label.value]).union(chart.value["index"])) | |
new_spam = list(set(current_labels[neg_label.value]).difference(chart.value["index"])) | |
set_label({neg_label.value: new_spam, pos_label.value: new_ham}) | |
return (add_label,) | |
def _( | |
br, | |
btn_ham, | |
btn_spam, | |
btn_undo, | |
chart, | |
form, | |
json_download, | |
mo, | |
neg_label, | |
pos_label, | |
switch, | |
): | |
mo.vstack([ | |
mo.md("Assign label names"), | |
mo.hstack([pos_label, neg_label]), | |
mo.md("Explore the data"), | |
mo.hstack([btn_ham, btn_spam, btn_undo, switch, json_download]), | |
br(), | |
form if switch.value else "", | |
br() if switch.value else "", | |
chart | |
]) | |
return | |
def _(chart): | |
chart.value["text"] | |
return | |
def _(chart, get_label, neg_label, pos_label, set_label): | |
def undo(): | |
current_labels = get_label() | |
new_spam = set(current_labels[neg_label.value]).difference(chart.value["index"]) | |
new_ham = set(current_labels[pos_label.value]).difference(chart.value["index"]) | |
set_label({neg_label.value: list(new_spam), pos_label.value: list(new_ham)}) | |
return (undo,) | |
def _(): | |
from mohtml import br | |
return (br,) | |
def _(mo, neg_label, pos_label): | |
get_label, set_label = mo.state({pos_label.value: [], neg_label.value: []}) | |
return get_label, set_label | |
def _(mo): | |
text_input = mo.ui.text_area(label="Reference sentences") | |
form = mo.md("""{text_input}""").batch(text_input=text_input).form() | |
return form, text_input | |
def _(df_emb, labels, mo): | |
from collections import Counter | |
with mo.status.spinner(subtitle="Starting UI ...") as _spinner: | |
df_emb | |
Counter(labels) | |
return (Counter,) | |
def _(df_emb, mo, pl): | |
import json | |
data = df_emb.filter(pl.col("label") != "unlabeled").select("text", "label").to_dicts() | |
json_download = mo.download( | |
data=json.dumps(data).encode("utf-8"), | |
filename="data.json", | |
mimetype="application/json", | |
label="Download JSON", | |
) | |
return data, json, json_download | |
def _(df_emb, mo, scatter): | |
chart = mo.ui.altair_chart(scatter(df_emb)) | |
return (chart,) | |
def _(mo): | |
switch = mo.ui.switch(False, label="Use search") | |
switch | |
return (switch,) | |
def _(alt, neg_label, pos_label, switch): | |
def scatter(df): | |
return (alt.Chart(df) | |
.mark_circle() | |
.encode( | |
x=alt.X("x:Q"), | |
y=alt.Y("y:Q"), | |
color=alt.Color("sim:Q") if switch.value else alt.Color("label:N", scale=alt.Scale( | |
domain=['unlabeled', pos_label.value, neg_label.value], | |
range=['steelblue', 'green', 'red'] | |
)) | |
).properties(width=500, height=500)) | |
return (scatter,) | |
def _( | |
X, | |
X_tfm, | |
cosine_similarity, | |
form, | |
get_label, | |
neg_label, | |
np, | |
pl, | |
pos_label, | |
texts, | |
tfm, | |
): | |
df_emb = ( | |
pl.DataFrame({ | |
"x": X_tfm[:, 0], | |
"y": X_tfm[:, 1], | |
"index": range(X.shape[0]), | |
"text": texts | |
}).with_columns(sim=pl.lit(1)) | |
) | |
if form.value: | |
query = tfm.encode([form.value["text_input"]]) | |
similarity = cosine_similarity(query, X)[0] | |
df_emb = df_emb.with_columns(sim=similarity) | |
spam = set(get_label()[neg_label.value]) | |
ham = set(get_label()[pos_label.value]) | |
labels = [] | |
for i in range(df_emb.shape[0]): | |
if i in spam: | |
labels.append(neg_label.value) | |
elif i in ham: | |
labels.append(pos_label.value) | |
else: | |
labels.append("unlabeled") | |
df_emb = df_emb.with_columns(label=np.array(labels)) | |
return df_emb, ham, i, labels, query, similarity, spam | |
def _(mo): | |
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner: | |
import polars as pl | |
import altair as alt | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sklearn.linear_model import LogisticRegression | |
return LogisticRegression, alt, cosine_similarity, np, pl | |
def _(mo): | |
with mo.status.spinner(subtitle="Loading SBERT ...") as _spinner: | |
from sentence_transformers import SentenceTransformer | |
return (SentenceTransformer,) | |
def _(): | |
import marimo as mo | |
return (mo,) | |
def _(): | |
return | |
if __name__ == "__main__": | |
app.run() | |