Spaces:
Running
Running
# /// script | |
# requires-python = "==3.12" | |
# dependencies = [ | |
# "marimo", | |
# "polars==1.23.0", | |
# "scikit-learn==1.6.1", | |
# "numpy==2.1.3", | |
# "mohtml==0.1.2", | |
# "model2vec==0.4.0", | |
# "altair==5.5.0", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.11.14" | |
app = marimo.App() | |
def _(mo): | |
mo.md("""### Fast labelling demo""") | |
return | |
def _(mo, use_default_switch): | |
uploaded_file = mo.ui.file(kind="area") if not use_default_switch.value else None | |
uploaded_file | |
return (uploaded_file,) | |
def _(mo): | |
use_default_switch = mo.ui.switch(False, label="Use default dataset") | |
use_default_switch | |
return (use_default_switch,) | |
def _(mo): | |
pos_label = mo.ui.text("pos", placeholder="positive label name", label="positive class name") | |
neg_label = mo.ui.text("neg", placeholder="negative label name", label="negative class name") | |
return neg_label, pos_label | |
def _(uploaded_file, use_default_switch): | |
should_stop = not use_default_switch.value and len(uploaded_file.value) == 0 | |
return (should_stop,) | |
def _(mo, pl, should_stop, uploaded_file, use_default_switch): | |
mo.stop(should_stop , mo.md("**Submit a dataset or use default one to continue.**")) | |
if use_default_switch.value: | |
df = pl.read_csv("spam.csv") | |
else: | |
df = pl.read_csv(uploaded_file.value[0].contents) | |
texts = df["text"].to_list() | |
return df, texts | |
def _(StaticModel, mo): | |
with mo.status.spinner(subtitle="Loading model ...") as _spinner: | |
tfm = StaticModel.from_pretrained("minishlab/potion-retrieval-32M") | |
return (tfm,) | |
def _(mo, should_stop): | |
mo.stop(should_stop) | |
text_input = mo.ui.text_area("you will win a free ringtone!", label="Reference sentences") | |
form = mo.md("""{text_input}""").batch(text_input=text_input).form() | |
form | |
return form, text_input | |
def _(mo, texts, tfm): | |
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner: | |
X = tfm.encode(texts) | |
return (X,) | |
def _(add_label, get_example, mo, neg_label, pos_label, undo): | |
btn_spam = mo.ui.button( | |
label=f"Annotate {neg_label.value}", | |
on_click=lambda d: add_label(get_example(), neg_label.value), | |
keyboard_shortcut="Ctrl-L" | |
) | |
btn_ham = mo.ui.button( | |
label=f"Annotate {pos_label.value}", | |
on_click=lambda d: add_label(get_example(), pos_label.value), | |
keyboard_shortcut="Ctrl-K" | |
) | |
btn_undo = mo.ui.button( | |
label="Undo", | |
on_click=lambda d: undo(), | |
keyboard_shortcut="Ctrl-U" | |
) | |
return btn_ham, btn_spam, btn_undo | |
def _(gen, get_label, set_example, set_label): | |
def add_label(text, lab): | |
current_labels = get_label() | |
set_label(current_labels + [{"text": text, "label": lab}]) | |
set_example(next(gen)) | |
def undo(): | |
current_labels = get_label() | |
set_label(current_labels[:-2]) | |
return add_label, undo | |
def _(): | |
from mohtml import br | |
return (br,) | |
def _(br, btn_ham, btn_spam, btn_undo, example, mo, neg_label, p, pos_label): | |
mo.vstack([ | |
mo.hstack([ | |
pos_label, neg_label | |
]), | |
br(), | |
mo.hstack([ | |
btn_ham, btn_spam, btn_undo | |
]), | |
br(), | |
p("Current example:", klass="font-bold"), | |
example | |
]) | |
return | |
def _(mo): | |
get_label, set_label = mo.state([]) | |
return get_label, set_label | |
def _(gen, mo): | |
get_example, set_example = mo.state(next(gen)) | |
return get_example, set_example | |
def _(): | |
from mohtml import tailwind_css, div, p | |
tailwind_css() | |
return div, p, tailwind_css | |
def _(get_label, mo): | |
import json | |
data = get_label() | |
json_download = mo.download( | |
data=json.dumps(data).encode("utf-8"), | |
filename="data.json", | |
mimetype="application/json", | |
label="Download JSON", | |
) | |
return data, json, json_download | |
def _(X, cosine_similarity, form, get_label, mo, pl, texts, tfm): | |
mo.stop(not form.value, "Need a text input to fetch example") | |
mo.stop(not form.value.get("text_input", None), "Need a text input to fetch example") | |
df_emb = ( | |
pl.DataFrame({ | |
"index": range(X.shape[0]), | |
"text": texts | |
}).with_columns(sim=pl.lit(1)) | |
) | |
query = tfm.encode([form.value["text_input"]]) | |
similarity = cosine_similarity(query, X)[0] | |
df_emb = df_emb.with_columns(sim=similarity).sort(pl.col("sim"), descending=True) | |
label_texts = [_["text"] for _ in get_label()] | |
gen = (_["text"] for _ in df_emb.head(100).to_dicts() if _["text"] not in label_texts) | |
return df_emb, gen, label_texts, query, similarity | |
def _(div, get_example, p): | |
example = div( | |
p(get_example()), | |
klass="bg-gray-100 p-4 rounded-lg" | |
) | |
return (example,) | |
def _(get_label, mo, pl, should_stop): | |
mo.stop(should_stop) | |
pl.DataFrame(get_label()).reverse() | |
return | |
def _(mo): | |
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner: | |
import polars as pl | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
return cosine_similarity, np, pl | |
def _(mo): | |
with mo.status.spinner(subtitle="Loading model2vec ...") as _spinner: | |
from model2vec import StaticModel | |
return (StaticModel,) | |
def _(): | |
import marimo as mo | |
return (mo,) | |
def _(): | |
return | |
if __name__ == "__main__": | |
app.run() | |