Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,26 +3,23 @@
|
|
3 |
# dependencies = [
|
4 |
# "marimo",
|
5 |
# "polars==1.23.0",
|
6 |
-
# "sentence-transformers==3.4.1",
|
7 |
-
# "umap-learn==0.5.7",
|
8 |
-
# "llvmlite==0.44.0",
|
9 |
-
# "altair==5.5.0",
|
10 |
# "scikit-learn==1.6.1",
|
11 |
# "numpy==2.1.3",
|
12 |
# "mohtml==0.1.2",
|
13 |
# "model2vec==0.4.0",
|
|
|
14 |
# ]
|
15 |
# ///
|
16 |
|
17 |
import marimo
|
18 |
|
19 |
-
__generated_with = "0.11.
|
20 |
app = marimo.App()
|
21 |
|
22 |
|
23 |
@app.cell
|
24 |
def _(mo):
|
25 |
-
mo.md("""###
|
26 |
return
|
27 |
|
28 |
|
@@ -42,8 +39,8 @@ def _(mo):
|
|
42 |
|
43 |
@app.cell
|
44 |
def _(mo):
|
45 |
-
pos_label = mo.ui.text("pos", placeholder="positive label name")
|
46 |
-
neg_label = mo.ui.text("neg", placeholder="negative label name")
|
47 |
return neg_label, pos_label
|
48 |
|
49 |
|
@@ -55,7 +52,7 @@ def _(uploaded_file, use_default_switch):
|
|
55 |
|
56 |
@app.cell
|
57 |
def _(mo, pl, should_stop, uploaded_file, use_default_switch):
|
58 |
-
mo.stop(
|
59 |
|
60 |
if use_default_switch.value:
|
61 |
df = pl.read_csv("spam.csv")
|
@@ -73,6 +70,16 @@ def _(StaticModel, mo):
|
|
73 |
return (tfm,)
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
@app.cell
|
77 |
def _(mo, texts, tfm):
|
78 |
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner:
|
@@ -81,7 +88,7 @@ def _(mo, texts, tfm):
|
|
81 |
|
82 |
|
83 |
@app.cell
|
84 |
-
def _(add_label, get_example, mo, neg_label, pos_label):
|
85 |
btn_spam = mo.ui.button(
|
86 |
label=f"Annotate {neg_label.value}",
|
87 |
on_click=lambda d: add_label(get_example(), neg_label.value),
|
@@ -92,7 +99,12 @@ def _(add_label, get_example, mo, neg_label, pos_label):
|
|
92 |
on_click=lambda d: add_label(get_example(), pos_label.value),
|
93 |
keyboard_shortcut="Ctrl-K"
|
94 |
)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
@app.cell
|
@@ -101,7 +113,11 @@ def _(gen, get_label, set_example, set_label):
|
|
101 |
current_labels = get_label()
|
102 |
set_label(current_labels + [{"text": text, "label": lab}])
|
103 |
set_example(next(gen))
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
@app.cell
|
@@ -110,6 +126,23 @@ def _():
|
|
110 |
return (br,)
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
@app.cell
|
114 |
def _(mo):
|
115 |
get_label, set_label = mo.state([])
|
@@ -122,23 +155,6 @@ def _(gen, mo):
|
|
122 |
return get_example, set_example
|
123 |
|
124 |
|
125 |
-
@app.cell
|
126 |
-
def _(div, get_example, p):
|
127 |
-
div(
|
128 |
-
p(get_example()),
|
129 |
-
klass="bg-gray-100 p-4 rounded-lg"
|
130 |
-
)
|
131 |
-
return
|
132 |
-
|
133 |
-
|
134 |
-
@app.cell
|
135 |
-
def _(btn_ham, btn_spam, mo):
|
136 |
-
mo.hstack([
|
137 |
-
btn_ham, btn_spam
|
138 |
-
])
|
139 |
-
return
|
140 |
-
|
141 |
-
|
142 |
@app.cell
|
143 |
def _():
|
144 |
from mohtml import tailwind_css, div, p
|
@@ -147,16 +163,6 @@ def _():
|
|
147 |
return div, p, tailwind_css
|
148 |
|
149 |
|
150 |
-
@app.cell
|
151 |
-
def _(mo, should_stop):
|
152 |
-
mo.stop(should_stop)
|
153 |
-
|
154 |
-
text_input = mo.ui.text_area("Query can go here", label="Reference sentences")
|
155 |
-
form = mo.md("""{text_input}""").batch(text_input=text_input).form()
|
156 |
-
form
|
157 |
-
return form, text_input
|
158 |
-
|
159 |
-
|
160 |
@app.cell
|
161 |
def _(get_label, mo):
|
162 |
import json
|
@@ -173,9 +179,8 @@ def _(get_label, mo):
|
|
173 |
|
174 |
|
175 |
@app.cell
|
176 |
-
def _(X, cosine_similarity, form, mo, pl, texts, tfm):
|
177 |
-
mo.stop(form
|
178 |
-
mo.stop(form.value is None, "Need a query input to fetch example")
|
179 |
|
180 |
df_emb = (
|
181 |
pl.DataFrame({
|
@@ -188,15 +193,25 @@ def _(X, cosine_similarity, form, mo, pl, texts, tfm):
|
|
188 |
query = tfm.encode([form.value["text_input"]])
|
189 |
similarity = cosine_similarity(query, X)[0]
|
190 |
df_emb = df_emb.with_columns(sim=similarity).sort(pl.col("sim"), descending=True)
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
|
195 |
@app.cell
|
196 |
def _(get_label, mo, pl, should_stop):
|
197 |
mo.stop(should_stop)
|
198 |
|
199 |
-
pl.DataFrame(get_label())
|
200 |
return
|
201 |
|
202 |
|
@@ -204,12 +219,9 @@ def _(get_label, mo, pl, should_stop):
|
|
204 |
def _(mo):
|
205 |
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner:
|
206 |
import polars as pl
|
207 |
-
import altair as alt
|
208 |
import numpy as np
|
209 |
from sklearn.metrics.pairwise import cosine_similarity
|
210 |
-
|
211 |
-
from sklearn.decomposition import PCA
|
212 |
-
return LogisticRegression, PCA, alt, cosine_similarity, np, pl
|
213 |
|
214 |
|
215 |
@app.cell
|
@@ -231,4 +243,4 @@ def _():
|
|
231 |
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
-
app.run()
|
|
|
3 |
# dependencies = [
|
4 |
# "marimo",
|
5 |
# "polars==1.23.0",
|
|
|
|
|
|
|
|
|
6 |
# "scikit-learn==1.6.1",
|
7 |
# "numpy==2.1.3",
|
8 |
# "mohtml==0.1.2",
|
9 |
# "model2vec==0.4.0",
|
10 |
+
# "altair==5.5.0",
|
11 |
# ]
|
12 |
# ///
|
13 |
|
14 |
import marimo
|
15 |
|
16 |
+
__generated_with = "0.11.14"
|
17 |
app = marimo.App()
|
18 |
|
19 |
|
20 |
@app.cell
|
21 |
def _(mo):
|
22 |
+
mo.md("""### Fast labelling demo""")
|
23 |
return
|
24 |
|
25 |
|
|
|
39 |
|
40 |
@app.cell
|
41 |
def _(mo):
|
42 |
+
pos_label = mo.ui.text("pos", placeholder="positive label name", label="positive class name")
|
43 |
+
neg_label = mo.ui.text("neg", placeholder="negative label name", label="negative class name")
|
44 |
return neg_label, pos_label
|
45 |
|
46 |
|
|
|
52 |
|
53 |
@app.cell
|
54 |
def _(mo, pl, should_stop, uploaded_file, use_default_switch):
|
55 |
+
mo.stop(should_stop , mo.md("**Submit a dataset or use default one to continue.**"))
|
56 |
|
57 |
if use_default_switch.value:
|
58 |
df = pl.read_csv("spam.csv")
|
|
|
70 |
return (tfm,)
|
71 |
|
72 |
|
73 |
+
@app.cell
|
74 |
+
def _(mo, should_stop):
|
75 |
+
mo.stop(should_stop)
|
76 |
+
|
77 |
+
text_input = mo.ui.text_area("you will win a free ringtone!", label="Reference sentences")
|
78 |
+
form = mo.md("""{text_input}""").batch(text_input=text_input).form()
|
79 |
+
form
|
80 |
+
return form, text_input
|
81 |
+
|
82 |
+
|
83 |
@app.cell
|
84 |
def _(mo, texts, tfm):
|
85 |
with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner:
|
|
|
88 |
|
89 |
|
90 |
@app.cell
|
91 |
+
def _(add_label, get_example, mo, neg_label, pos_label, undo):
|
92 |
btn_spam = mo.ui.button(
|
93 |
label=f"Annotate {neg_label.value}",
|
94 |
on_click=lambda d: add_label(get_example(), neg_label.value),
|
|
|
99 |
on_click=lambda d: add_label(get_example(), pos_label.value),
|
100 |
keyboard_shortcut="Ctrl-K"
|
101 |
)
|
102 |
+
btn_undo = mo.ui.button(
|
103 |
+
label="Undo",
|
104 |
+
on_click=lambda d: undo(),
|
105 |
+
keyboard_shortcut="Ctrl-U"
|
106 |
+
)
|
107 |
+
return btn_ham, btn_spam, btn_undo
|
108 |
|
109 |
|
110 |
@app.cell
|
|
|
113 |
current_labels = get_label()
|
114 |
set_label(current_labels + [{"text": text, "label": lab}])
|
115 |
set_example(next(gen))
|
116 |
+
|
117 |
+
def undo():
|
118 |
+
current_labels = get_label()
|
119 |
+
set_label(current_labels[:-2])
|
120 |
+
return add_label, undo
|
121 |
|
122 |
|
123 |
@app.cell
|
|
|
126 |
return (br,)
|
127 |
|
128 |
|
129 |
+
@app.cell
|
130 |
+
def _(br, btn_ham, btn_spam, btn_undo, example, mo, neg_label, p, pos_label):
|
131 |
+
mo.vstack([
|
132 |
+
mo.hstack([
|
133 |
+
pos_label, neg_label
|
134 |
+
]),
|
135 |
+
br(),
|
136 |
+
mo.hstack([
|
137 |
+
btn_ham, btn_spam, btn_undo
|
138 |
+
]),
|
139 |
+
br(),
|
140 |
+
p("Current example:", klass="font-bold"),
|
141 |
+
example
|
142 |
+
])
|
143 |
+
return
|
144 |
+
|
145 |
+
|
146 |
@app.cell
|
147 |
def _(mo):
|
148 |
get_label, set_label = mo.state([])
|
|
|
155 |
return get_example, set_example
|
156 |
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
@app.cell
|
159 |
def _():
|
160 |
from mohtml import tailwind_css, div, p
|
|
|
163 |
return div, p, tailwind_css
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
@app.cell
|
167 |
def _(get_label, mo):
|
168 |
import json
|
|
|
179 |
|
180 |
|
181 |
@app.cell
|
182 |
+
def _(X, cosine_similarity, form, get_label, mo, pl, texts, tfm):
|
183 |
+
mo.stop(not form.value.get("text_input", None), "Need a text input to fetch example")
|
|
|
184 |
|
185 |
df_emb = (
|
186 |
pl.DataFrame({
|
|
|
193 |
query = tfm.encode([form.value["text_input"]])
|
194 |
similarity = cosine_similarity(query, X)[0]
|
195 |
df_emb = df_emb.with_columns(sim=similarity).sort(pl.col("sim"), descending=True)
|
196 |
+
label_texts = [_["text"] for _ in get_label()]
|
197 |
+
gen = (_["text"] for _ in df_emb.head(100).to_dicts() if _["text"] not in label_texts)
|
198 |
+
return df_emb, gen, label_texts, query, similarity
|
199 |
+
|
200 |
+
|
201 |
+
@app.cell
|
202 |
+
def _(div, get_example, p):
|
203 |
+
example = div(
|
204 |
+
p(get_example()),
|
205 |
+
klass="bg-gray-100 p-4 rounded-lg"
|
206 |
+
)
|
207 |
+
return (example,)
|
208 |
|
209 |
|
210 |
@app.cell
|
211 |
def _(get_label, mo, pl, should_stop):
|
212 |
mo.stop(should_stop)
|
213 |
|
214 |
+
pl.DataFrame(get_label()).reverse()
|
215 |
return
|
216 |
|
217 |
|
|
|
219 |
def _(mo):
|
220 |
with mo.status.spinner(subtitle="Loading libraries ...") as _spinner:
|
221 |
import polars as pl
|
|
|
222 |
import numpy as np
|
223 |
from sklearn.metrics.pairwise import cosine_similarity
|
224 |
+
return cosine_similarity, np, pl
|
|
|
|
|
225 |
|
226 |
|
227 |
@app.cell
|
|
|
243 |
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
+
app.run()
|