File size: 5,069 Bytes
15ebd87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# /// script
# dependencies = [
#     "marimo",
#     "polars==1.28.1",
#     "requests==2.32.3",
# ]
# [tool.marimo.runtime]
# auto_instantiate = false
# ///

import marimo

__generated_with = "0.13.2"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    import polars as pl
    import requests
    import json
    return mo, pl, requests


@app.cell
def _(requests):
    json_data = requests.get(
        "https://raw.githubusercontent.com/jesshart/fake-datasets/refs/heads/main/orders.json"
    )
    return (json_data,)


@app.cell
def _(mo):
    mo.md(
        r"""
        # Loading Data
        Let's start by loading our data and getting into the `.lazy()` format so our transformations and queries are speedy.

        Read more about `.lazy()` here: https://docs.pola.rs/user-guide/lazy/
        """
    )
    return


@app.cell
def _(json_data, pl):
    demand: pl.LazyFrame = pl.read_json(json_data.content).lazy()
    demand
    return (demand,)


@app.cell
def _(mo):
    mo.md(
        r"""
        Above, you will notice that when you reference the object as a standalone, you get out-of-the-box convenince from `marimo`. You have the `Table` and `Query Plan` options to choose from. 

        - 💡 Try out the `Table` view! You can click the `Preview data` button to get a quick view of your data.
        - 💡 Take a look at the `Query plan`. Learn more about Polar's query plan here: https://docs.pola.rs/user-guide/lazy/query-plan/
        """
    )
    return


@app.cell
def _(mo):
    mo.md(
        r"""
        # marimo's Native Dataframe UI

        There are a few ways to leverage marimo's native dataframe UI. One is by doing what we saw above—by referencing a `pl.LazyFrame` directly. You can also try,

        - Reference a `pl.LazyFrame` (we already did this!)
        - Referencing a `pl.DataFrame` and see how it different from its corresponding lazy version
        - Use `mo.ui.table`
        - Use `mo.ui.dataframe`
        """
    )
    return


@app.cell
def _(mo):
    mo.md(
        r"""
        ## Reference a pl.DataFrame
        Let's reference the same frame as before, but this time as a `pl.DataFrame` by calling `.collect()` on it.
        """
    )
    return


@app.cell
def _(demand):
    demand.collect()
    return


@app.cell
def _(mo):
    mo.md(
        r"""
        Note how much functionality we have right out-of-the-box. Click on column names to see rich features like sorting, freezing, filtering, searching, and more!

        Notice how `order_quantity` has a green bar chart under it indicating the ditribution of values for the field!

        Don't miss the `Download` feature as well which supports downloading in CSV, json, or parquet format!
        """
    )
    return


@app.cell
def _(mo):
    mo.md(
        r"""
        ## Use `mo.ui.table`
        The `mo.ui.table` allows you to select rows for use downstream. You can select the rows you want, and then use these as filtered rows downstream.
        """
    )
    return


@app.cell
def _(demand, mo):
    demand_table = mo.ui.table(demand, label="Demand Table")
    return (demand_table,)


@app.cell
def _(demand_table):
    demand_table
    return


@app.cell
def _(mo):
    mo.md(r"""I like to use this feature to select groupings based on summary statistics so I can quickly explore subsets of categories. Let me show you what I mean.""")
    return


@app.cell
def _(demand, pl):
    summary: pl.LazyFrame = demand.group_by("product_family").agg(
        pl.mean("order_quantity").alias("mean"),
        pl.sum("order_quantity").alias("sum"),
        pl.std("order_quantity").alias("std"),
        pl.min("order_quantity").alias("min"),
        pl.max("order_quantity").alias("max"),
        pl.col("order_quantity").null_count().alias("null_count"),
    )
    return (summary,)


@app.cell
def _(mo, summary):
    summary_table = mo.ui.table(summary)
    return (summary_table,)


@app.cell
def _(summary_table):
    summary_table
    return


@app.cell
def _(mo):
    mo.md(
        r"""
        Now, instead of manually creatinga filter for what I want to take a closer look at, I simply select from the ui and do a simple join to get that aggregated level with more detail.

        The following cell uses the output of the `mo.ui.table` selection, selects its unique keys, and uses that to join for the selected subset of the original table.
        """
    )
    return


@app.cell
def _(demand, pl, summary_table):
    selection_keys: pl.LazyFrame = (
        summary_table.value.lazy().select("product_family").unique()
    )
    selection: pl.lazyframe = selection_keys.join(
        demand, on="product_family", how="left"
    )
    selection.collect()
    return


@app.cell
def _(mo):
    mo.md(r"""## Use `mo.ui.dataframe`""")
    return


@app.cell
def _(demand, mo):
    mo_dateframe = mo.ui.dataframe(demand.collect())
    return (mo_dateframe,)


@app.cell
def _(mo_dateframe):
    mo_dateframe
    return


@app.cell
def _():
    return


if __name__ == "__main__":
    app.run()