Spaces:
Running
Running
File size: 27,273 Bytes
5e6566d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.4",
# "scipy==1.15.2",
# "altair==5.2.0",
# "wigglystuff==0.1.10",
# "pandas==2.2.3",
# ]
# ///
import marimo
__generated_with = "0.11.24"
app = marimo.App(width="medium", app_title="Poisson Distribution")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Poisson Distribution
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/poisson/), by Stanford professor Chris Piech._
A Poisson random variable gives the probability of a given number of events in a fixed interval of time (or space). It makes the Poisson assumption that events occur with a known constant mean rate and independently of the time since the last event.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Poisson Random Variable Definition
$X \sim \text{Poisson}(\lambda)$ represents a Poisson random variable where:
- $X$ is our random variable (number of events)
- $\text{Poisson}$ indicates it follows a Poisson distribution
- $\lambda$ is the rate parameter (average number of events per time interval)
```
X ~ Poisson(λ)
↑ ↑ ↑
| | +-- Rate parameter:
| | average number of
| | events per interval
| +-- Indicates Poisson
| distribution
|
Our random variable
counting number of events
```
The Poisson distribution is particularly useful when:
1. Events occur independently of each other
2. The average rate of occurrence is constant
3. Two events cannot occur at exactly the same instant
4. The probability of an event is proportional to the length of the time interval
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Properties of Poisson Distribution
| Property | Formula |
|----------|---------|
| Notation | $X \sim \text{Poisson}(\lambda)$ |
| Description | Number of events in a fixed time frame if (a) events occur with a constant mean rate and (b) they occur independently of time since last event |
| Parameters | $\lambda \in \mathbb{R}^{+}$, the constant average rate |
| Support | $x \in \{0, 1, \dots\}$ |
| PMF equation | $P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$ |
| Expectation | $E[X] = \lambda$ |
| Variance | $\text{Var}(X) = \lambda$ |
Note that unlike many other distributions, the Poisson distribution's mean and variance are equal, both being $\lambda$.
Let's explore how the Poisson distribution changes with different rate parameters.
"""
)
return
@app.cell(hide_code=True)
def _(TangleSlider, mo):
# Create interactive elements using TangleSlider
lambda_slider = mo.ui.anywidget(TangleSlider(
amount=5,
min_value=0.1,
max_value=20,
step=0.1,
digits=1,
suffix=" events"
))
# interactive controls
_controls = mo.vstack([
mo.md("### Adjust the Rate Parameter to See How Poisson Distribution Changes"),
mo.hstack([
mo.md("**Rate parameter (λ):** "),
lambda_slider,
mo.md("**events per interval.** Higher values shift the distribution rightward and make it more spread out.")
], justify="start"),
])
_controls
return (lambda_slider,)
@app.cell(hide_code=True)
def _(lambda_slider, np, plt, stats):
_lambda = lambda_slider.amount
# PMF for values
_max_x = max(20, int(_lambda * 3)) # Show at least up to 3*lambda
_x = np.arange(0, _max_x + 1)
_pmf = stats.poisson.pmf(_x, _lambda)
# Relevant key statistics
_mean = _lambda # For Poisson, mean = lambda
_variance = _lambda # For Poisson, variance = lambda
_std_dev = np.sqrt(_variance)
# plot
_fig, _ax = plt.subplots(figsize=(10, 6))
# PMF as bars
_ax.bar(_x, _pmf, color='royalblue', alpha=0.7, label=f'PMF: P(X=k)')
# for the PMF values
_ax.plot(_x, _pmf, 'ro-', alpha=0.6, label='PMF line')
# Vertical lines - mean and key values
_ax.axvline(x=_mean, color='green', linestyle='--', linewidth=2,
label=f'Mean: {_mean:.2f}')
# Stdev region
_ax.axvspan(_mean - _std_dev, _mean + _std_dev, alpha=0.2, color='green',
label=f'±1 Std Dev: {_std_dev:.2f}')
_ax.set_xlabel('Number of Events (k)')
_ax.set_ylabel('Probability: P(X=k)')
_ax.set_title(f'Poisson Distribution with λ={_lambda:.1f}')
# annotations
_ax.annotate(f'E[X] = {_mean:.2f}',
xy=(_mean, stats.poisson.pmf(int(_mean), _lambda)),
xytext=(_mean + 1, max(_pmf) * 0.8),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
_ax.annotate(f'Var(X) = {_variance:.2f}',
xy=(_mean, stats.poisson.pmf(int(_mean), _lambda) / 2),
xytext=(_mean + 1, max(_pmf) * 0.6),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
_ax.grid(alpha=0.3)
_ax.legend()
plt.tight_layout()
plt.gca()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Poisson Intuition: Relation to Binomial Distribution
The Poisson distribution can be derived as a limiting case of the [binomial distribution](http://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/14_binomial_distribution.py).
Let's work on a practical example: predicting the number of ride-sharing requests in a specific area over a one-minute interval. From historical data, we know that the average number of requests per minute is $\lambda = 5$.
We could approximate this using a binomial distribution by dividing our minute into smaller intervals. For example, we can divide a minute into 60 seconds and treat each second as a [Bernoulli trial](http://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/13_bernoulli_distribution.py) - either there's a request (success) or there isn't (failure).
Let's visualize this concept:
"""
)
return
@app.cell(hide_code=True)
def _(fig_to_image, mo, plt):
# Create a visualization of dividing a minute into 60 seconds
_fig, _ax = plt.subplots(figsize=(12, 2))
# Example events at 2.75s and 7.12s
_events = [2.75, 7.12]
# Create an array of 60 rectangles
for i in range(60):
_color = 'royalblue' if any(i <= e < i+1 for e in _events) else 'lightgray'
_ax.add_patch(plt.Rectangle((i, 0), 0.9, 1, color=_color))
# markers for events
for e in _events:
_ax.plot(e, 0.5, 'ro', markersize=10)
# labels
_ax.set_xlim(0, 60)
_ax.set_ylim(0, 1)
_ax.set_yticks([])
_ax.set_xticks([0, 15, 30, 45, 60])
_ax.set_xticklabels(['0s', '15s', '30s', '45s', '60s'])
_ax.set_xlabel('Time (seconds)')
_ax.set_title('One Minute Divided into 60 Second Intervals')
plt.tight_layout()
# Convert plot to image for display
_img = mo.image(fig_to_image(_fig), width="100%")
# explanation
_explanation = mo.md(
r"""
In this visualization:
- Each rectangle represents a 1-second interval
- Blue rectangles indicate intervals where an event occurred
- Red dots show the actual event times (2.75s and 7.12s)
If we treat this as a binomial experiment with 60 trials (seconds), we can calculate probabilities using the binomial PMF. But there's a problem: what if multiple events occur within the same second? To address this, we can divide our minute into smaller intervals.
"""
)
return e, i
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
The total number of requests received over the minute can be approximated as the sum of the sixty indicator variables, which conveniently matches the description of a binomial — a sum of Bernoullis.
Specifically, if we define $X$ to be the number of requests in a minute, $X$ is a binomial with $n=60$ trials. What is the probability, $p$, of a success on a single trial? To make the expectation of $X$ equal the observed historical average $\lambda$, we should choose $p$ so that:
\begin{align}
\lambda &= E[X] && \text{Expectation matches historical average} \\
\lambda &= n \cdot p && \text{Expectation of a Binomial is } n \cdot p \\
p &= \frac{\lambda}{n} && \text{Solving for $p$}
\end{align}
In this case, since $\lambda=5$ and $n=60$, we should choose $p=\frac{5}{60}=\frac{1}{12}$ and state that $X \sim \text{Bin}(n=60, p=\frac{5}{60})$. Now we can calculate the probability of different numbers of requests using the binomial PMF:
$P(X = x) = {n \choose x} p^x (1-p)^{n-x}$
For example:
\begin{align}
P(X=1) &= {60 \choose 1} (5/60)^1 (55/60)^{60-1} \approx 0.0295 \\
P(X=2) &= {60 \choose 2} (5/60)^2 (55/60)^{60-2} \approx 0.0790 \\
P(X=3) &= {60 \choose 3} (5/60)^3 (55/60)^{60-3} \approx 0.1389
\end{align}
This is a good approximation, but it doesn't account for the possibility of multiple events in a single second. One solution is to divide our minute into even more fine-grained intervals. Let's try 600 deciseconds (tenths of a second):
"""
)
return
@app.cell(hide_code=True)
def _(e, fig_to_image, mo, plt):
# Create a visualization of dividing a minute into 600 deciseconds
# (Just showing the first 100 for clarity)
_fig, _ax = plt.subplots(figsize=(12, 2))
# Example events at 2.75s and 7.12s (convert to deciseconds)
_events = [27.5, 71.2]
# Create a representative portion of the 600 rectangles (first 100)
for _i in range(100):
_color = 'royalblue' if any(_i <= _e < _i + 1 for _e in _events) else 'lightgray'
_ax.add_patch(plt.Rectangle((_i, 0), 0.9, 1, color=_color))
# Add markers for events
for _e in _events:
if _e < 100: # Only show events in our visible range
_ax.plot(e, 0.5, 'ro', markersize=10)
# Add labels
_ax.set_xlim(0, 100)
_ax.set_ylim(0, 1)
_ax.set_yticks([])
_ax.set_xticks([0, 20, 40, 60, 80, 100])
_ax.set_xticklabels(['0s', '2s', '4s', '6s', '8s', '10s'])
_ax.set_xlabel('Time (first 10 seconds shown)')
_ax.set_title('One Minute Divided into 600 Decisecond Intervals (first 100 shown)')
plt.tight_layout()
# Convert plot to image for display
_img = mo.image(fig_to_image(_fig), width="100%")
# Add explanation
_explanation = mo.md(
r"""
With $n=600$ and $p=\frac{5}{600}=\frac{1}{120}$, we can recalculate our probabilities:
\begin{align}
P(X=1) &= {600 \choose 1} (5/600)^1 (595/600)^{600-1} \approx 0.0333 \\
P(X=2) &= {600 \choose 2} (5/600)^2 (595/600)^{600-2} \approx 0.0837 \\
P(X=3) &= {600 \choose 3} (5/600)^3 (595/600)^{600-3} \approx 0.1402
\end{align}
As we make our intervals smaller (increasing $n$), our approximation becomes more accurate.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## The Binomial Distribution in the Limit
What happens if we continue dividing our time interval into smaller and smaller pieces? Let's explore how the probabilities change as we increase the number of intervals:
"""
)
return
@app.cell(hide_code=True)
def _(mo):
# slider for number of intervals
intervals_slider = mo.ui.slider(
start = 60,
stop = 10000,
step=100,
value=600,
label="Number of intervals to divide a minute")
return (intervals_slider,)
@app.cell(hide_code=True)
def _(intervals_slider):
intervals_slider
return
@app.cell(hide_code=True)
def _(intervals_slider, np, pd, plt, stats):
# number of intervals from the slider
n = intervals_slider.value
_lambda = 5 # Fixed lambda for our example
p = _lambda / n
# Calculate the binomial probabilities
_x_values = np.arange(0, 15)
_binom_pmf = stats.binom.pmf(_x_values, n, p)
# Calculate the true Poisson probabilities
_poisson_pmf = stats.poisson.pmf(_x_values, _lambda)
# Create a DataFrame for comparison
df = pd.DataFrame({
'Events': _x_values,
f'Binomial(n={n}, p={p:.6f})': _binom_pmf,
f'Poisson(λ=5)': _poisson_pmf,
'Difference': np.abs(_binom_pmf - _poisson_pmf)
})
# Plot both PMFs
fig, _ax = plt.subplots(figsize=(10, 6))
# Bar plot for the binomial
_ax.bar(_x_values - 0.2, _binom_pmf, width=0.4, alpha=0.7,
color='royalblue', label=f'Binomial(n={n}, p={p:.6f})')
# Bar plot for the Poisson
_ax.bar(_x_values + 0.2, _poisson_pmf, width=0.4, alpha=0.7,
color='crimson', label='Poisson(λ=5)')
# Add labels and title
_ax.set_xlabel('Number of Events (k)')
_ax.set_ylabel('Probability')
_ax.set_title(f'Comparison of Binomial and Poisson PMFs with n={n}')
_ax.legend()
_ax.set_xticks(_x_values)
_ax.grid(alpha=0.3)
plt.tight_layout()
return df, fig, n, p
@app.cell(hide_code=True)
def _(df, fig, fig_to_image, mo, n, p):
# table of values
_styled_df = df.style.format({
f'Binomial(n={n}, p={p:.6f})': '{:.6f}',
f'Poisson(λ=5)': '{:.6f}',
'Difference': '{:.6f}'
})
# Calculate the maximum absolute difference
_max_diff = df['Difference'].max()
# output
_chart = mo.image(fig_to_image(fig), width="100%")
_explanation = mo.md(f"**Maximum absolute difference between distributions: {_max_diff:.6f}**")
_table = mo.ui.table(df)
mo.vstack([_chart, _explanation, _table])
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
As you can see from the interactive comparison above, as the number of intervals increases, the binomial distribution approaches the Poisson distribution! This is not a coincidence - the Poisson distribution is actually the limiting case of the binomial distribution when:
- The number of trials $n$ approaches infinity
- The probability of success $p$ approaches zero
- The product $np = \lambda$ remains constant
This relationship is why the Poisson distribution is so useful - it's easier to work with than a binomial with a very large number of trials and a very small probability of success.
## Derivation of the Poisson PMF
Let's derive the Poisson PMF by taking the limit of the binomial PMF as $n \to \infty$. We start with:
$P(X=x) = \lim_{n \rightarrow \infty} {n \choose x} (\lambda / n)^x(1-\lambda/n)^{n-x}$
While this expression looks intimidating, it simplifies nicely:
\begin{align}
P(X=x)
&= \lim_{n \rightarrow \infty} {n \choose x} (\lambda / n)^x(1-\lambda/n)^{n-x}
&& \text{Start: binomial in the limit}\\
&= \lim_{n \rightarrow \infty}
{n \choose x} \cdot
\frac{\lambda^x}{n^x} \cdot
\frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{x}}
&& \text{Expanding the power terms} \\
&= \lim_{n \rightarrow \infty}
\frac{n!}{(n-x)!x!} \cdot
\frac{\lambda^x}{n^x} \cdot
\frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{x}}
&& \text{Expanding the binomial term} \\
&= \lim_{n \rightarrow \infty}
\frac{n!}{(n-x)!x!} \cdot
\frac{\lambda^x}{n^x} \cdot
\frac{e^{-\lambda}}{(1-\lambda/n)^{x}}
&& \text{Using limit rule } \lim_{n \rightarrow \infty}(1-\lambda/n)^{n} = e^{-\lambda}\\
&= \lim_{n \rightarrow \infty}
\frac{n!}{(n-x)!x!} \cdot
\frac{\lambda^x}{n^x} \cdot
\frac{e^{-\lambda}}{1}
&& \text{As } n \to \infty \text{, } \lambda/n \to 0\\
&= \lim_{n \rightarrow \infty}
\frac{n!}{(n-x)!} \cdot
\frac{1}{x!} \cdot
\frac{\lambda^x}{n^x} \cdot
e^{-\lambda}
&& \text{Rearranging terms}\\
&= \lim_{n \rightarrow \infty}
\frac{n^x}{1} \cdot
\frac{1}{x!} \cdot
\frac{\lambda^x}{n^x} \cdot
e^{-\lambda}
&& \text{As } n \to \infty \text{, } \frac{n!}{(n-x)!} \approx n^x\\
&= \lim_{n \rightarrow \infty}
\frac{\lambda^x}{x!} \cdot
e^{-\lambda}
&& \text{Canceling } n^x\\
&=
\frac{\lambda^x \cdot e^{-\lambda}}{x!}
&& \text{Simplifying}\\
\end{align}
This gives us our elegant Poisson PMF formula: $P(X=x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}$
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Poisson Distribution in Python
Python's `scipy.stats` module provides functions to work with the Poisson distribution. Let's see how to calculate probabilities and generate random samples.
First, let's calculate some probabilities for our ride-sharing example with $\lambda = 5$:
"""
)
return
@app.cell
def _(stats):
# Set lambda parameter
_lambda = 5
# Calculate probabilities for X = 1, 2, 3
p_1 = stats.poisson.pmf(1, _lambda)
p_2 = stats.poisson.pmf(2, _lambda)
p_3 = stats.poisson.pmf(3, _lambda)
print(f"P(X=1) = {p_1:.5f}")
print(f"P(X=2) = {p_2:.5f}")
print(f"P(X=3) = {p_3:.5f}")
# Calculate cumulative probability P(X ≤ 3)
p_leq_3 = stats.poisson.cdf(3, _lambda)
print(f"P(X≤3) = {p_leq_3:.5f}")
# Calculate probability P(X > 10)
p_gt_10 = 1 - stats.poisson.cdf(10, _lambda)
print(f"P(X>10) = {p_gt_10:.5f}")
return p_1, p_2, p_3, p_gt_10, p_leq_3
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We can also generate random samples from a Poisson distribution and visualize their distribution:""")
return
@app.cell(hide_code=True)
def _(np, plt, stats):
# 1000 random samples from Poisson(lambda=5)
_lambda = 5
_samples = stats.poisson.rvs(_lambda, size=1000)
# theoretical PMF
_x_values = np.arange(0, max(_samples) + 1)
_pmf_values = stats.poisson.pmf(_x_values, _lambda)
# histograms to compare
_fig, _ax = plt.subplots(figsize=(10, 6))
# samples as a histogram
_ax.hist(_samples, bins=np.arange(-0.5, max(_samples) + 1.5, 1),
alpha=0.7, density=True, label='Random Samples')
# theoretical PMF
_ax.plot(_x_values, _pmf_values, 'ro-', label='Theoretical PMF')
# labels and title
_ax.set_xlabel('Number of Events')
_ax.set_ylabel('Relative Frequency / Probability')
_ax.set_title(f'1000 Random Samples from Poisson(λ={_lambda})')
_ax.legend()
_ax.grid(alpha=0.3)
# annotations
_ax.annotate(f'Sample Mean: {np.mean(_samples):.2f}',
xy=(0.7, 0.9), xycoords='axes fraction',
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.3))
_ax.annotate(f'Theoretical Mean: {_lambda:.2f}',
xy=(0.7, 0.8), xycoords='axes fraction',
bbox=dict(boxstyle='round,pad=0.5', fc='lightgreen', alpha=0.3))
plt.tight_layout()
plt.gca()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Changing Time Frames
One important property of the Poisson distribution is that the rate parameter $\lambda$ scales linearly with the time interval. If events occur at a rate of $\lambda$ per unit time, then over a period of $t$ units, the rate parameter becomes $\lambda \cdot t$.
For example, if a website receives an average of 5 requests per minute, what is the distribution of requests over a 20-minute period?
The rate parameter for the 20-minute period would be $\lambda = 5 \cdot 20 = 100$ requests.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
# sliders for the rate and time period
rate_slider = mo.ui.slider(
start = 0.1,
stop = 10,
step=0.1,
value=5,
label="Rate per unit time (λ)"
)
time_slider = mo.ui.slider(
start = 1,
stop = 60,
step=1,
value=20,
label="Time period (t units)"
)
controls = mo.vstack([
mo.md("### Adjust Parameters to See How Time Scaling Works"),
mo.hstack([rate_slider, time_slider], justify="space-between")
])
return controls, rate_slider, time_slider
@app.cell(hide_code=True)
def _(mo, np, plt, rate_slider, stats, time_slider):
# parameters from sliders
_rate = rate_slider.value
_time = time_slider.value
# scaled rate parameter
_lambda = _rate * _time
# PMF for values
_max_x = max(30, int(_lambda * 1.5))
_x = np.arange(0, _max_x + 1)
_pmf = stats.poisson.pmf(_x, _lambda)
# plot
_fig, _ax = plt.subplots(figsize=(10, 6))
# PMF as bars
_ax.bar(_x, _pmf, color='royalblue', alpha=0.7,
label=f'PMF: Poisson(λ={_lambda:.1f})')
# vertical line for mean
_ax.axvline(x=_lambda, color='red', linestyle='--', linewidth=2,
label=f'Mean = {_lambda:.1f}')
# labels and title
_ax.set_xlabel('Number of Events')
_ax.set_ylabel('Probability')
_ax.set_title(f'Poisson Distribution Over {_time} Units (Rate = {_rate}/unit)')
# better visualization if lambda is large
if _lambda > 10:
_ax.set_xlim(_lambda - 4*np.sqrt(_lambda), _lambda + 4*np.sqrt(_lambda))
_ax.legend()
_ax.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
# additional information
info = mo.md(
f"""
When the rate is **{_rate}** events per unit time and we observe for **{_time}** units:
- The expected number of events is **{_lambda:.1f}**
- The variance is also **{_lambda:.1f}**
- The standard deviation is **{np.sqrt(_lambda):.2f}**
- P(X=0) = {stats.poisson.pmf(0, _lambda):.4f} (probability of no events)
- P(X≥10) = {1 - stats.poisson.cdf(9, _lambda):.4f} (probability of 10 or more events)
"""
)
return (info,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Pick which of these statements about Poisson distributions you think are correct:
/// details | The variance of a Poisson distribution is always equal to its mean
✅ Correct! For a Poisson distribution with parameter $\lambda$, both the mean and variance equal $\lambda$.
///
/// details | The Poisson distribution can be used to model the number of successes in a fixed number of trials
❌ Incorrect! That's the binomial distribution. The Poisson distribution models the number of events in a fixed interval of time or space, not a fixed number of trials.
///
/// details | If $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$
✅ Correct! The sum of independent Poisson random variables is also a Poisson random variable with parameter equal to the sum of the individual parameters.
///
/// details | As $\lambda$ increases, the Poisson distribution approaches a normal distribution
✅ Correct! For large values of $\lambda$ (generally $\lambda > 10$), the Poisson distribution is approximately normal with mean $\lambda$ and variance $\lambda$.
///
/// details | The probability of zero events in a Poisson process is always less than the probability of one event
❌ Incorrect! For $\lambda < 1$, the probability of zero events ($e^{-\lambda}$) is actually greater than the probability of one event ($\lambda e^{-\lambda}$).
///
/// details | The Poisson distribution has a single parameter $\lambda$, which always equals the average number of events per time period
✅ Correct! The parameter $\lambda$ represents the average rate of events, and it uniquely defines the distribution.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
The Poisson distribution is one of those incredibly useful tools that shows up all over the place. I've always found it fascinating how such a simple formula can model so many real-world phenomena - from website traffic to radioactive decay.
What makes the Poisson really cool is that it emerges naturally as we try to model rare events occurring over a continuous interval. Remember that visualization where we kept dividing time into smaller and smaller chunks? As we showed, when you take a binomial distribution and let the number of trials approach infinity while keeping the expected value constant, you end up with the elegant Poisson formula.
The key things to remember about the Poisson distribution:
- It models the number of events occurring in a fixed interval of time or space, assuming events happen at a constant average rate and independently of each other
- Its PMF is given by the elegantly simple formula $P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Both the mean and variance equal the parameter $\lambda$, which represents the average number of events per interval
- It's related to the binomial distribution as a limiting case when $n \to \infty$, $p \to 0$, and $np = \lambda$ remains constant
- The rate parameter scales linearly with the length of the interval - if events occur at rate $\lambda$ per unit time, then over $t$ units, the parameter becomes $\lambda t$
From modeling website traffic and customer arrivals to defects in manufacturing and radioactive decay, the Poisson distribution provides a powerful and mathematically elegant way to understand random occurrences in our world.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Appendix code (helper functions, variables, etc.):""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _():
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import pandas as pd
import altair as alt
from wigglystuff import TangleSlider
return TangleSlider, alt, np, pd, plt, stats
@app.cell(hide_code=True)
def _():
import io
import base64
from matplotlib.figure import Figure
# Helper function to convert mpl figure to an image format mo.image can hopefully handle
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
data = f"data:image/png;base64,{base64.b64encode(buf.read()).decode('utf-8')}"
return data
return Figure, base64, fig_to_image, io
if __name__ == "__main__":
app.run()
|