Spaces:
Running
Running
File size: 7,530 Bytes
f56200e 07062d3 f56200e 07062d3 f56200e 8646a4e f56200e 07062d3 f56200e 07062d3 f56200e 07062d3 f56200e 07062d3 f56200e 07062d3 f56200e 07062d3 f56200e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "cvxpy==1.6.0",
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.2",
# "wigglystuff==0.1.9",
# ]
# ///
import marimo
__generated_with = "0.11.0"
app = marimo.App()
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Quadratic program
A quadratic program is an optimization problem with a quadratic objective and
affine equality and inequality constraints. A common standard form is the
following:
\[
\begin{array}{ll}
\text{minimize} & (1/2)x^TPx + q^Tx\\
\text{subject to} & Gx \leq h \\
& Ax = b.
\end{array}
\]
Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise.
**Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time.
**An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem
\[
\begin{array}{ll}
\text{minimize} & (1/2)x^T\Sigma x - r^Tx\\
\text{subject to} & x \geq 0 \\
& \mathbf{1}^Tx = 1,
\end{array}
\]
to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return.
When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Example
In this example, we use CVXPY to construct and solve a quadratic program.
"""
)
return
@app.cell
def _():
import cvxpy as cp
import numpy as np
return cp, np
@app.cell(hide_code=True)
def _(mo):
mo.md("""First we generate synthetic data. In this problem, we don't include equality constraints, only inequality.""")
return
@app.cell
def _(np):
m = 4
n = 2
np.random.seed(1)
q = np.random.randn(n)
G = np.random.randn(m, n)
h = G @ np.random.randn(n)
return G, h, m, n, q
@app.cell(hide_code=True)
def _(mo, np):
import wigglystuff
P_widget = mo.ui.anywidget(
wigglystuff.Matrix(np.array([[4.0, -1.4], [-1.4, 4]]), step=0.1)
)
mo.md(
f"""
The quadratic form $P$ is equal to the symmetrized version of this
matrix:
{P_widget.center()}
"""
)
return P_widget, wigglystuff
@app.cell
def _(P_widget, np):
P = 0.5 * (np.array(P_widget.matrix) + np.array(P_widget.matrix).T)
return (P,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""")
return
@app.cell
def _(G, P, cp, h, n, q):
x = cp.Variable(n)
problem = cp.Problem(
cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x),
[G @ x <= h],
)
_ = problem.solve()
return problem, x
@app.cell(hide_code=True)
def _(mo, problem, x):
mo.md(
f"""
The optimal value is {problem.value:.04f}.
A solution $x$ is {mo.as_html(list(x.value))}
A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))}
"""
)
return
@app.cell
def _(G, P, h, plot_contours, q, x):
plot_contours(P, G, h, q, x.value)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
In this plot, the gray shaded region is the feasible region (points satisfying the inequality), and the ellipses are level curves of the quadratic form.
**🌊 Try it!** Try changing the entries of $P$ above with your mouse. How do the
level curves and the optimal value of $x$ change? Can you explain what you see?
"""
)
return
@app.cell(hide_code=True)
def _(P, mo):
mo.md(
rf"""
The above contour lines were generated with
\[
P= \begin{{bmatrix}}
{P[0, 0]:.01f} & {P[0, 1]:.01f} \\
{P[1, 0]:.01f} & {P[1, 1]:.01f} \\
\end{{bmatrix}}
\]
"""
)
return
@app.cell(hide_code=True)
def _(np):
def plot_contours(P, G, h, q, x_star):
import matplotlib.pyplot as plt
# Create a grid of x and y values.
x = np.linspace(-5, 5, 400)
y = np.linspace(-5, 5, 400)
X, Y = np.meshgrid(x, y)
# Compute the quadratic form Q(x, y) = a*x^2 + 2*b*x*y + c*y^2.
# Here, a = P[0,0], b = P[0,1] (and P[1,0]), c = P[1,1]
Z = (
0.5 * (P[0, 0] * X**2 + 2 * P[0, 1] * X * Y + P[1, 1] * Y**2)
+ q[0] * X
+ q[1] * Y
)
# --- Evaluate the constraints on the grid ---
# We stack X and Y to get a list of (x,y) points.
points = np.vstack([X.ravel(), Y.ravel()]).T
# Start with all points feasible
feasible = np.ones(points.shape[0], dtype=bool)
# Apply the inequality constraints Gx <= h.
# Each row of G and corresponding h defines a condition.
for i in range(G.shape[0]):
# For a given point x, the condition is: G[i,0]*x + G[i,1]*y <= h[i]
feasible &= points.dot(G[i]) <= h[i] + 1e-8 # small tolerance
# Reshape the boolean mask back to grid shape.
feasible_grid = feasible.reshape(X.shape)
# --- Plot the feasible region and contour lines---
plt.figure(figsize=(8, 6))
# Use contourf to fill the region where feasible_grid is True.
# We define two levels, so that points that are True (feasible) get one
# color.
plt.contourf(
X,
Y,
feasible_grid,
levels=[-0.5, 0.5, 1.5],
colors=["white", "gray"],
alpha=0.5,
)
contours = plt.contour(X, Y, Z, levels=10, cmap="viridis")
plt.clabel(contours, inline=True, fontsize=8)
plt.title("Feasible region and level curves")
plt.xlabel("$x_1$")
plt.ylabel("$y_2$")
# plt.colorbar(contours, label='Q(x, y)')
ax = plt.gca()
# Optionally, mark and label the point x_star.
ax.plot(x_star[0], x_star[1], "ko", markersize=5)
ax.text(
x_star[0],
x_star[1],
r"$\mathbf{x}^\star$",
color="black",
fontsize=12,
verticalalignment="bottom",
horizontalalignment="right",
)
return plt.gca()
return (plot_contours,)
if __name__ == "__main__":
app.run()
|