File size: 7,530 Bytes
f56200e
 
 
 
 
07062d3
f56200e
07062d3
f56200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07062d3
f56200e
 
 
 
 
07062d3
 
f56200e
 
 
 
 
07062d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56200e
 
 
 
 
 
 
 
 
07062d3
f56200e
 
 
 
07062d3
f56200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07062d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56200e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# /// script
# requires-python = ">=3.13"
# dependencies = [
#     "cvxpy==1.6.0",
#     "marimo",
#     "matplotlib==3.10.0",
#     "numpy==2.2.2",
#     "wigglystuff==0.1.9",
# ]
# ///

import marimo

__generated_with = "0.11.0"
app = marimo.App()


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Quadratic program

        A quadratic program is an optimization problem with a quadratic objective and
        affine equality and inequality constraints. A common standard form is the
        following:

        \[
            \begin{array}{ll}
            \text{minimize}   & (1/2)x^TPx + q^Tx\\
            \text{subject to} & Gx \leq h \\
                              & Ax = b.
            \end{array}
        \]

        Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise.

        **Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time.

        **An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem

        \[
            \begin{array}{ll}
            \text{minimize}   & (1/2)x^T\Sigma x - r^Tx\\
            \text{subject to} & x \geq 0 \\
                              & \mathbf{1}^Tx = 1,
            \end{array}
        \]

        to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return.

        When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Example

        In this example, we use CVXPY to construct and solve a quadratic program.
        """
    )
    return


@app.cell
def _():
    import cvxpy as cp
    import numpy as np
    return cp, np


@app.cell(hide_code=True)
def _(mo):
    mo.md("""First we generate synthetic data. In this problem, we don't include equality constraints, only inequality.""")
    return


@app.cell
def _(np):
    m = 4
    n = 2

    np.random.seed(1)
    q = np.random.randn(n)
    G = np.random.randn(m, n)
    h = G @ np.random.randn(n)
    return G, h, m, n, q


@app.cell(hide_code=True)
def _(mo, np):
    import wigglystuff

    P_widget = mo.ui.anywidget(
        wigglystuff.Matrix(np.array([[4.0, -1.4], [-1.4, 4]]), step=0.1)
    )

    mo.md(
        f"""
        The quadratic form $P$ is equal to the symmetrized version of this
        matrix:

        {P_widget.center()}
        """
    )
    return P_widget, wigglystuff


@app.cell
def _(P_widget, np):
    P = 0.5 * (np.array(P_widget.matrix) + np.array(P_widget.matrix).T)
    return (P,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""")
    return


@app.cell
def _(G, P, cp, h, n, q):
    x = cp.Variable(n)

    problem = cp.Problem(
        cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x),
        [G @ x <= h],
    )
    _ = problem.solve()
    return problem, x


@app.cell(hide_code=True)
def _(mo, problem, x):
    mo.md(
        f"""
        The optimal value is {problem.value:.04f}.

        A solution $x$ is {mo.as_html(list(x.value))}
        A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))}
        """
    )
    return


@app.cell
def _(G, P, h, plot_contours, q, x):
    plot_contours(P, G, h, q, x.value)
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        In this plot, the gray shaded region is the feasible region (points satisfying the inequality), and the ellipses are level curves of the quadratic form.

        **🌊 Try it!** Try changing the entries of $P$ above with your mouse. How do the
        level curves and the optimal value of $x$ change? Can you explain what you see?
        """
    )
    return


@app.cell(hide_code=True)
def _(P, mo):
    mo.md(
        rf"""
        The above contour lines were generated with
        
        \[
        P= \begin{{bmatrix}}
        {P[0, 0]:.01f} & {P[0, 1]:.01f} \\
        {P[1, 0]:.01f} & {P[1, 1]:.01f} \\
        \end{{bmatrix}}
        \]
        """
    )
    return


@app.cell(hide_code=True)
def _(np):
    def plot_contours(P, G, h, q, x_star):
        import matplotlib.pyplot as plt

        # Create a grid of x and y values.
        x = np.linspace(-5, 5, 400)
        y = np.linspace(-5, 5, 400)
        X, Y = np.meshgrid(x, y)

        # Compute the quadratic form Q(x, y) = a*x^2 + 2*b*x*y + c*y^2.
        # Here, a = P[0,0], b = P[0,1] (and P[1,0]), c = P[1,1]
        Z = (
            0.5 * (P[0, 0] * X**2 + 2 * P[0, 1] * X * Y + P[1, 1] * Y**2)
            + q[0] * X
            + q[1] * Y
        )

        # --- Evaluate the constraints on the grid ---
        # We stack X and Y to get a list of (x,y) points.
        points = np.vstack([X.ravel(), Y.ravel()]).T

        # Start with all points feasible
        feasible = np.ones(points.shape[0], dtype=bool)

        # Apply the inequality constraints Gx <= h.
        # Each row of G and corresponding h defines a condition.
        for i in range(G.shape[0]):
            # For a given point x, the condition is: G[i,0]*x + G[i,1]*y <= h[i]
            feasible &= points.dot(G[i]) <= h[i] + 1e-8  # small tolerance
        # Reshape the boolean mask back to grid shape.
        feasible_grid = feasible.reshape(X.shape)

        # --- Plot the feasible region and contour lines---
        plt.figure(figsize=(8, 6))

        # Use contourf to fill the region where feasible_grid is True.
        # We define two levels, so that points that are True (feasible) get one
        # color.
        plt.contourf(
            X,
            Y,
            feasible_grid,
            levels=[-0.5, 0.5, 1.5],
            colors=["white", "gray"],
            alpha=0.5,
        )

        contours = plt.contour(X, Y, Z, levels=10, cmap="viridis")
        plt.clabel(contours, inline=True, fontsize=8)
        plt.title("Feasible region and level curves")
        plt.xlabel("$x_1$")
        plt.ylabel("$y_2$")
        # plt.colorbar(contours, label='Q(x, y)')

        ax = plt.gca()
        # Optionally, mark and label the point x_star.
        ax.plot(x_star[0], x_star[1], "ko", markersize=5)
        ax.text(
            x_star[0],
            x_star[1],
            r"$\mathbf{x}^\star$",
            color="black",
            fontsize=12,
            verticalalignment="bottom",
            horizontalalignment="right",
        )
        return plt.gca()
    return (plot_contours,)


@app.cell
def _():
    import marimo as mo
    return (mo,)


if __name__ == "__main__":
    app.run()