Spaces:
Sleeping
Sleeping
File size: 9,146 Bytes
9e55022 8646a4e 9e55022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "cvxpy==1.6.0",
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.2",
# "wigglystuff==0.1.9",
# ]
# ///
import marimo
__generated_with = "0.11.0"
app = marimo.App()
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Linear program
A linear program is an optimization problem with a linear objective and affine
inequality constraints. A common standard form is the following:
\[
\begin{array}{ll}
\text{minimize} & c^Tx \\
\text{subject to} & Ax \leq b.
\end{array}
\]
Here $A \in \mathcal{R}^{m \times n}$, $b \in \mathcal{R}^m$, and $c \in \mathcal{R}^n$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Ax \leq b$ is elementwise.
For example, we might have $n$ different products, each constructed out of $m$ components. Each entry $A_{ij}$ is the amount of component $i$ required to build one unit of product $j$. Each entry $b_i$ is the total amount of component $i$ available. We lose $c_j$ for each unit of product $j$ ($c_j < 0$ indicates profit). Our goal then is to choose how many units of each product $j$ to make, $x_j$, in order to minimize loss without exceeding our budget for any component.
In addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$. A positive entry $\lambda^\star_i$ indicates that the constraint $a_i^Tx \leq b_i$ holds with equality for $x^\star$ and suggests that changing $b_i$ would change the optimal value.
**Why linear programming?** Linear programming is a way to achieve an optimal outcome, such as maximum utility or lowest cost, subject to a linear objective function and affine constraints. Developed in the 20th century, linear programming is widely used today to solve problems in resource allocation, scheduling, transportation, and more. The discovery of polynomial-time algorithms to solve linear programs was of tremendous worldwide importance and entered the public discourse, even making the front page of the New York Times.
In the late 20th and early 21st century, researchers generalized linear programming to a much wider class of problems called convex optimization problems. Nearly all convex optimization problems can be solved efficiently and reliably, and even more difficult problems are readily solved by a sequence of convex optimization problems. Today, convex optimization is used to fit machine learning models, land rockets in real-time at SpaceX, plan trajectories for self-driving cars at Waymo, execute many billions of dollars of financial trades a day, and much more.
This marimo learn course uses CVXPY, a modeling language for convex optimization problems developed originally at Stanford, to construct and solve convex programs.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
f"""
{mo.image("https://www.debugmind.com/wp-content/uploads/2020/01/spacex-1.jpg")}
_SpaceX solves convex optimization problems onboard to land its rockets, using CVXGEN, a code generator for quadratic programming developed at Stephen Boyd’s Stanford lab. Photo by SpaceX, licensed CC BY-NC 2.0._
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Example
Here we use CVXPY to construct and solve a linear program.
"""
)
return
@app.cell
def _():
import cvxpy as cp
import numpy as np
return cp, np
@app.cell(hide_code=True)
def _(np):
A = np.array(
[
[0.76103773, 0.12167502],
[0.44386323, 0.33367433],
[1.49407907, -0.20515826],
[0.3130677, -0.85409574],
[-2.55298982, 0.6536186],
[0.8644362, -0.74216502],
[2.26975462, -1.45436567],
[0.04575852, -0.18718385],
[1.53277921, 1.46935877],
[0.15494743, 0.37816252],
]
)
b = np.array(
[
2.05062369,
0.94934659,
0.89559424,
1.04389978,
2.45035643,
-0.95479445,
-0.83801349,
-0.26562529,
2.35763652,
0.98286942,
]
)
return A, b
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We've randomly generated problem data $A$ and $B$. The vector for $c$ is shown below. Try playing with the value of $c$ by dragging the components, and see how the level curves change in the visualization below.""")
return
@app.cell
def _(mo, np):
from wigglystuff import Matrix
c_widget = mo.ui.anywidget(Matrix(matrix=np.array([[0.1, -0.2]]), step=0.01))
c_widget
return Matrix, c_widget
@app.cell
def _(c_widget, np):
c = np.array(c_widget.value["matrix"][0])
return (c,)
@app.cell
def _(A, b, c, cp):
x = cp.Variable(A.shape[1])
prob = cp.Problem(cp.Minimize(c.T @ x), [A @ x <= b])
_ = prob.solve()
x_star = x.value
return prob, x, x_star
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Below, we plot the feasible region of the problem — the intersection of the inequalities — and the level curves of the objective function. The optimal value $x^\star$ is the point farthest in the feasible region in the direction $-c$.""")
return
@app.cell(hide_code=True)
def _(A, b, c, make_plot, x_star):
make_plot(A, b, c, x_star)
return
@app.cell(hide_code=True)
def _(np):
import matplotlib.pyplot as plt
def make_plot(A, b, c, x_star):
# Define a grid over a region that covers the feasible set.
# You might need to adjust these limits.
x_vals = np.linspace(-1, 1, 400)
y_vals = np.linspace(1, 3, 400)
X, Y = np.meshgrid(x_vals, y_vals)
# Flatten the grid points into an (N,2) array.
points = np.vstack([X.ravel(), Y.ravel()]).T
# For each point, check if it satisfies all the constraints: A @ x <= b.
# A dot product: shape of A @ x.T will be (m, N). We add a little tolerance.
feasible = np.all(np.dot(A, points.T) <= (b[:, None] + 1e-8), axis=0)
feasible = feasible.reshape(X.shape)
# Create the figure with a white background.
fig = plt.figure(figsize=(8, 6), facecolor="white")
ax = fig.add_subplot(111)
ax.set_facecolor("white")
# Plot the feasible region.
# Since "feasible" is a boolean array (False=0, True=1), we set contour levels so that
# the region with value 1 (feasible) gets filled.
ax.contourf(
X,
Y,
feasible.astype(float),
levels=[-0.5, 0.5, 1.5],
colors=["white", "gray"],
alpha=0.5,
)
# Plot level curves of the objective function c^T x.
# Compute c^T x over the grid:
Z = c[0] * X + c[1] * Y
# Choose several levels for the iso-cost lines.
levels = np.linspace(np.min(Z), np.max(Z), 20)
contours = ax.contour(
X, Y, Z, levels=levels, colors="gray", linestyles="--", linewidths=1
)
# Draw the vector -c as an arrow starting at x_star.
norm_c = np.linalg.norm(c)
if norm_c > 0:
head_width = norm_c * 0.1
head_length = norm_c * 0.1
# The arrow starts at x_star and points in the -c direction.
ax.arrow(
x_star[0],
x_star[1],
-c[0],
-c[1],
head_width=head_width,
head_length=head_length,
fc="black",
ec="black",
length_includes_head=True,
)
# Label the arrow near its tip.
ax.text(
x_star[0] - c[0] * 1.05,
x_star[1] - c[1] * 1.05,
r"$-c$",
color="black",
fontsize=12,
)
# Optionally, mark and label the point x_star.
ax.plot(x_star[0], x_star[1], "ko", markersize=5)
ax.text(
x_star[0],
x_star[1],
r"$\mathbf{x}^\star$",
color="black",
fontsize=12,
verticalalignment="bottom",
horizontalalignment="right",
)
# Label the axes and set title.
ax.set_xlabel("$x_1$")
ax.set_ylabel("$x_2$")
ax.set_title("Feasible Region and Level Curves of $c^Tx$")
ax.set_xlim(np.min(x_vals), np.max(x_vals))
ax.set_ylim(np.min(y_vals), np.max(y_vals))
return ax
return make_plot, plt
@app.cell(hide_code=True)
def _(mo, prob, x):
mo.md(
f"""
The optimal value is {prob.value:.04f}.
A solution $x$ is {mo.as_html(list(x.value))}
A dual solution is is {mo.as_html(list(prob.constraints[0].dual_value))}
"""
)
return
if __name__ == "__main__":
app.run()
|