Spaces:
Running
Running
File size: 13,780 Bytes
f57b8b5 4c17152 f57b8b5 4c17152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "marimo",
# "polars==1.23.0",
# ]
# ///
import marimo
__generated_with = "0.11.13"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Basic operations on data
_By [Joram Mutenge](https://www.udemy.com/user/joram-mutenge/)._
In this notebook, you'll learn how to perform arithmetic operations, comparisons, and conditionals on a Polars dataframe. We'll work with a DataFrame that tracks software usage by year, categorized as either Vintage (old) or Modern (new).
"""
)
return
@app.cell
def _():
import polars as pl
df = pl.DataFrame(
{
"software": [
"Lotus-123",
"WordStar",
"dBase III",
"VisiCalc",
"WinZip",
"MS-DOS",
"HyperCard",
"WordPerfect",
"Excel",
"Photoshop",
"Visual Studio",
"Slack",
"Zoom",
"Notion",
"Figma",
"Spotify",
"VSCode",
"Docker",
],
"users": [
10000,
4500,
2500,
3000,
1800,
17000,
2200,
1900,
500000,
12000000,
1500000,
3000000,
4000000,
2000000,
2500000,
4500000,
6000000,
3500000,
],
"category": ["Vintage"] * 8 + ["Modern"] * 10,
"year": [
1985,
1980,
1984,
1979,
1991,
1981,
1987,
1982,
1987,
1990,
1997,
2013,
2011,
2016,
2016,
2008,
2015,
2013,
],
}
)
df
return df, pl
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Arithmetic
### Addition
Let's add 42 users to each piece of software. This means adding 42 to each value under **users**.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users") + 42)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Another way to perform the above operation is using the built-in function.""")
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users").add(42))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Subtraction
Let's subtract 42 users to each piece of software.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users") - 42)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Alternatively, you could subtract like this:""")
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users").sub(42))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Division
Suppose the **users** values are inflated, we can reduce them by dividing by 1000. Here's how to do it.
"""
)
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users") / 1000)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Or we could do it with a built-in expression.""")
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users").truediv(1000))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""If we didn't care about the remainder after division (i.e remove numbers after decimal point) we could do it like this.""")
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users").floordiv(1000))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Multiplication
Let's pretend the *user* values are deflated and increase them by multiplying by 100.
"""
)
return
@app.cell
def _(df, pl):
(df.with_columns(pl.col("users") * 100))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Polars also has a built-in function for multiplication.""")
return
@app.cell
def _(df, pl):
df.with_columns(pl.col("users").mul(100))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""So far, we've only modified the values in an existing column. Let's create a column **decade** that will represent the years as decades. Thus 1985 will be 1980 and 2008 will be 2000.""")
return
@app.cell
def _(df, pl):
(df.with_columns(decade=pl.col("year").floordiv(10).mul(10)))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We could create a new column another way as follows:""")
return
@app.cell
def _(df, pl):
df.with_columns((pl.col("year").floordiv(10).mul(10)).alias("decade"))
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
**Tip**
Polars encounrages you to perform your operations as a chain. This enables you to take advantage of the query optimizer. We'll build upon the above code as a chain.
## Comparison
### Equal
Let's get all the software categorized as Vintage.
"""
)
return
@app.cell
def _(df, pl):
(
df.with_columns(decade=pl.col("year").floordiv(10).mul(10))
.filter(pl.col("category") == "Vintage")
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We could also do a double comparison. VisiCal is the only software that's vintage and in the decade 1970s. Let's perform this comparison operation.""")
return
@app.cell
def _(df, pl):
(
df.with_columns(decade=pl.col("year").floordiv(10).mul(10))
.filter(pl.col("category") == "Vintage")
.filter(pl.col("decade") == 1970)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
We could also do this comparison in one line, if readability is not a concern
**Notice** that we must enclose the two expressions between the `&` with parenthesis.
"""
)
return
@app.cell
def _(df, pl):
(
df.with_columns(decade=pl.col("year").floordiv(10).mul(10))
.filter((pl.col("category") == "Vintage") & (pl.col("decade") == 1970))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We can also use the built-in function for equal to comparisons.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(pl.col('category').eq('Vintage'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Not equal
We can also compare if something is `not` equal to something. In this case, category is not vintage.
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(pl.col('category') != 'Vintage')
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Or with the built-in function.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(pl.col('category').ne('Vintage'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Or if you want to be extra clever, you can use the negation symbol `~` used in logic.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(~pl.col('category').eq('Vintage'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Greater than
Let's get the software where the year is greater than 2008 from the above dataframe.
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(~pl.col('category').eq('Vintage'))
.filter(pl.col('year') > 2008)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Or if we wanted the year 2008 to be included, we could use great or equal to.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(~pl.col('category').eq('Vintage'))
.filter(pl.col('year') >= 2008)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We could do the previous two operations with built-in functions. Here's with greater than.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(~pl.col('category').eq('Vintage'))
.filter(pl.col('year').gt(2008))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""And here's with greater or equal to""")
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(~pl.col('category').eq('Vintage'))
.filter(pl.col('year').ge(2008))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
**Note**: For "less than", and "less or equal to" you can use the operators `<` or `<=`. Alternatively, you can use built-in functions `lt` or `le` respectively.
### Is between
Polars also allows us to filter between a range of values. Let's get the modern software were the year is between 2013 and 2016. This is inclusive on both ends (i.e. both years are part of the result).
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(pl.col('category').eq('Modern'))
.filter(pl.col('year').is_between(2013, 2016))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Or operator
If we only want either one of the conditions in the comparison to be met, we could use `|`, which is the `or` operator.
Let's get software that is either modern or used in the decade 1980s.
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter((pl.col('category') == 'Modern') | (pl.col('decade') == 1980))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Conditionals
Polars also allows you create new columns based on a condition. Let's create a column *status* that will indicate if the software is "discontinued" or "in use".
Here's a list of products that are no longer in use.
"""
)
return
@app.cell
def _():
discontinued_list = ['Lotus-123', 'WordStar', 'dBase III', 'VisiCalc', 'MS-DOS', 'HyperCard']
return (discontinued_list,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Here's how we can get a dataframe of the products that are discontinued.""")
return
@app.cell
def _(df, discontinued_list, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.filter(pl.col('software').is_in(discontinued_list))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now, let's create the **status** column.""")
return
@app.cell
def _(df, discontinued_list, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.with_columns(pl.when(pl.col('software').is_in(discontinued_list))
.then(pl.lit('Discontinued'))
.otherwise(pl.lit('In use'))
.alias('status')
)
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Unique counts
Sometimes you may want to see only the unique values in a column. Let's check the unique decades we have in our DataFrame.
"""
)
return
@app.cell
def _(df, discontinued_list, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.with_columns(pl.when(pl.col('software').is_in(discontinued_list))
.then(pl.lit('Discontinued'))
.otherwise(pl.lit('In use'))
.alias('status')
)
.select('decade').unique()
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Finally, let's find out the number of software used in each decade.""")
return
@app.cell
def _(df, discontinued_list, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.with_columns(pl.when(pl.col('software').is_in(discontinued_list))
.then(pl.lit('Discontinued'))
.otherwise(pl.lit('In use'))
.alias('status')
)
['decade'].value_counts()
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We could also rewrite the above code as follows:""")
return
@app.cell
def _(df, discontinued_list, pl):
(df
.with_columns(decade=pl.col('year').floordiv(10).mul(10))
.with_columns(pl.when(pl.col('software').is_in(discontinued_list))
.then(pl.lit('Discontinued'))
.otherwise(pl.lit('In use'))
.alias('status')
)
.select('decade').to_series().value_counts()
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Hopefully, we've picked your interest to try out Polars the next time you analyze your data.""")
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|