Spaces:
Running
Running
File size: 7,941 Bytes
e769793 d340dee e769793 d340dee e769793 d340dee e769793 d340dee e769793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "marimo",
# "polars==1.23.0",
# ]
# ///
import marimo
__generated_with = "0.11.14"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Aggregations
_By [Joram Mutenge](https://www.udemy.com/user/joram-mutenge/)._
In this notebook, you'll learn how to perform different types of aggregations in Polars, including grouping by categories and time. We'll analyze sales data from a clothing store, focusing on three product categories: hats, socks, and sweaters.
"""
)
return
@app.cell
def _():
import polars as pl
df = (pl.read_csv('https://raw.githubusercontent.com/jorammutenge/learn-rust/refs/heads/main/sample_sales.csv', try_parse_dates=True)
.rename(lambda col: col.replace(' ','_').lower())
)
df
return df, pl
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Grouping by category
### With single category
Let's find out how many of each product category we sold.
"""
)
return
@app.cell
def _(df, pl):
(df
.group_by('category')
.agg(pl.sum('quantity'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
It looks like we sold more sweaters. Maybe this was a winter season.
Let's add another aggregate to see how much was spent on the total units for each product.
"""
)
return
@app.cell
def _(df, pl):
(df
.group_by('category')
.agg(pl.sum('quantity'),
pl.sum('ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We could also write aggregate code for the two columns as a single line.""")
return
@app.cell
def _(df, pl):
(df
.group_by('category')
.agg(pl.sum('quantity','ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Actually, the way we've been writing the aggregate lines is syntactic sugar. Here's a longer way of doing it as shown in the [Polars documentation](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.dataframe.group_by.GroupBy.agg.html).""")
return
@app.cell
def _(df, pl):
(df
.group_by('category')
.agg(pl.col('quantity').sum(),
pl.col('ext_price').sum())
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### With multiple categories
We can also group by multiple categories. Let's find out how many items we sold in each product category for each SKU. This more detailed aggregation will produce more rows than the previous DataFrame.
"""
)
return
@app.cell
def _(df, pl):
(df
.group_by('category','sku')
.agg(pl.sum('quantity'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Aggregations when grouping data are not limited to sums. You can also use functions like [`max`, `min`, `median`, `first`, and `last`](https://docs.pola.rs/user-guide/expressions/aggregation/#basic-aggregations).
Let's find the largest sale quantity for each product category.
"""
)
return
@app.cell
def _(df, pl):
(df
.group_by('category')
.agg(pl.max('quantity'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Let's make the aggregation more interesting. We'll identify the first customer to purchase each item, along with the quantity they bought and the amount they spent.
**Note:** To make this work, we'll have to sort the date from earliest to latest.
"""
)
return
@app.cell
def _(df, pl):
(df
.sort('date')
.group_by('category')
.agg(pl.first('account_name','quantity','ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Grouping by time
Since `datetime` is a special data type in Polars, we can perform various group-by aggregations on it.
Our dataset spans a two-year period. Let's calculate the total dollar sales for each year. We'll do it the naive way first so you can appreciate grouping with time.
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(year=pl.col('date').dt.year())
.group_by('year')
.agg(pl.sum('ext_price').round(2))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
We had more sales in 2014.
Now let's perform the above operation by groupin with time. This requires sorting the dataframe first.
"""
)
return
@app.cell
def _(df, pl):
(df
.sort('date')
.group_by_dynamic('date', every='1y')
.agg(pl.sum('ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
The beauty of grouping with time is that it allows us to resample the data by selecting whatever time interval we want.
Let's find out what the quarterly sales were for 2014
"""
)
return
@app.cell
def _(df, pl):
(df
.filter(pl.col('date').dt.year() == 2014)
.sort('date')
.group_by_dynamic('date', every='1q')
.agg(pl.sum('ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Here's an interesting question we can answer that takes advantage of grouping by time.
Let's find the hour of the day where we had the most sales in dollars.
"""
)
return
@app.cell
def _(df, pl):
(df
.sort('date')
.group_by_dynamic('date', every='1h')
.agg(pl.max('ext_price'))
.filter(pl.col('ext_price') == pl.col('ext_price').max())
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Just for fun, let's find the median number of items sold in each SKU and the total dollar amount in each SKU every six days.""")
return
@app.cell
def _(df, pl):
(df
.sort('date')
.group_by_dynamic('date', every='6d')
.agg(pl.first('sku'),
pl.median('quantity'),
pl.sum('ext_price'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Let's rename the columns to clearly indicate the type of aggregation performed. This will help us identify the aggregation method used on a column without needing to check the code.""")
return
@app.cell
def _(df, pl):
(df
.sort('date')
.group_by_dynamic('date', every='6d')
.agg(pl.first('sku'),
pl.median('quantity').alias('median_qty'),
pl.sum('ext_price').alias('total_dollars'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Grouping with over
Sometimes, we may want to perform an aggregation but also keep all the columns and rows of the dataframe.
Let's assign a value to indicate the number of times each customer visited and bought something.
"""
)
return
@app.cell
def _(df, pl):
(df
.with_columns(buy_freq=pl.col('account_name').len().over('account_name'))
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Finally, let's determine which customers visited the store the most and bought something.""")
return
@app.cell
def _(df, pl):
(df
.with_columns(buy_freq=pl.col('account_name').len().over('account_name'))
.filter(pl.col('buy_freq') == pl.col('buy_freq').max())
.select('account_name','buy_freq')
.unique()
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""There's more you can do with aggregations in Polars such as [sorting with aggregations](https://docs.pola.rs/user-guide/expressions/aggregation/#sorting). We hope that in this notebook, we've armed you with the tools to get started.""")
return
if __name__ == "__main__":
app.run()
|