File size: 7,941 Bytes
e769793
 
 
 
 
 
 
 
 
 
d340dee
e769793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d340dee
e769793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d340dee
e769793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d340dee
e769793
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# /// script
# requires-python = ">=3.13"
# dependencies = [
#     "marimo",
#     "polars==1.23.0",
# ]
# ///

import marimo

__generated_with = "0.11.14"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Aggregations
        _By [Joram Mutenge](https://www.udemy.com/user/joram-mutenge/)._

        In this notebook, you'll learn how to perform different types of aggregations in Polars, including grouping by categories and time. We'll analyze sales data from a clothing store, focusing on three product categories: hats, socks, and sweaters.
        """
    )
    return


@app.cell
def _():
    import polars as pl

    df = (pl.read_csv('https://raw.githubusercontent.com/jorammutenge/learn-rust/refs/heads/main/sample_sales.csv', try_parse_dates=True)
          .rename(lambda col: col.replace(' ','_').lower())
         )
    df
    return df, pl


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Grouping by category
        ### With single category
        Let's find out how many of each product category we sold.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category')
     .agg(pl.sum('quantity'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        It looks like we sold more sweaters. Maybe this was a winter season.

        Let's add another aggregate to see how much was spent on the total units for each product.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category')
     .agg(pl.sum('quantity'),
          pl.sum('ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""We could also write aggregate code for the two columns as a single line.""")
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category')
     .agg(pl.sum('quantity','ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Actually, the way we've been writing the aggregate lines is syntactic sugar. Here's a longer way of doing it as shown in the [Polars documentation](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.dataframe.group_by.GroupBy.agg.html).""")
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category')
     .agg(pl.col('quantity').sum(),
          pl.col('ext_price').sum())
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### With multiple categories
        We can also group by multiple categories. Let's find out how many items we sold in each product category for each SKU. This more detailed aggregation will produce more rows than the previous DataFrame.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category','sku')
     .agg(pl.sum('quantity'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        Aggregations when grouping data are not limited to sums. You can also use functions like [`max`, `min`, `median`, `first`, and `last`](https://docs.pola.rs/user-guide/expressions/aggregation/#basic-aggregations).  

        Let's find the largest sale quantity for each product category.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .group_by('category')
     .agg(pl.max('quantity'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        Let's make the aggregation more interesting. We'll identify the first customer to purchase each item, along with the quantity they bought and the amount they spent.

        **Note:** To make this work, we'll have to sort the date from earliest to latest.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .sort('date')
     .group_by('category')
     .agg(pl.first('account_name','quantity','ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Grouping by time
        Since `datetime` is a special data type in Polars, we can perform various group-by aggregations on it.  

        Our dataset spans a two-year period. Let's calculate the total dollar sales for each year. We'll do it the naive way first so you can appreciate grouping with time.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .with_columns(year=pl.col('date').dt.year())
     .group_by('year')
     .agg(pl.sum('ext_price').round(2))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        We had more sales in 2014.

        Now let's perform the above operation by groupin with time. This requires sorting the dataframe first.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .sort('date')
     .group_by_dynamic('date', every='1y')
     .agg(pl.sum('ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        The beauty of grouping with time is that it allows us to resample the data by selecting whatever time interval we want.

        Let's find out what the quarterly sales were for 2014
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .filter(pl.col('date').dt.year() == 2014)
     .sort('date')
     .group_by_dynamic('date', every='1q')
     .agg(pl.sum('ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        Here's an interesting question we can answer that takes advantage of grouping by time.

        Let's find the hour of the day where we had the most sales in dollars.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .sort('date')
     .group_by_dynamic('date', every='1h')
     .agg(pl.max('ext_price'))
     .filter(pl.col('ext_price') == pl.col('ext_price').max())
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Just for fun, let's find the median number of items sold in each SKU and the total dollar amount in each SKU every six days.""")
    return


@app.cell
def _(df, pl):
    (df
     .sort('date')
     .group_by_dynamic('date', every='6d')
     .agg(pl.first('sku'),
          pl.median('quantity'),
          pl.sum('ext_price'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Let's rename the columns to clearly indicate the type of aggregation performed. This will help us identify the aggregation method used on a column without needing to check the code.""")
    return


@app.cell
def _(df, pl):
    (df
     .sort('date')
     .group_by_dynamic('date', every='6d')
     .agg(pl.first('sku'),
          pl.median('quantity').alias('median_qty'),
          pl.sum('ext_price').alias('total_dollars'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Grouping with over

        Sometimes, we may want to perform an aggregation but also keep all the columns and rows of the dataframe.

        Let's assign a value to indicate the number of times each customer visited and bought something.
        """
    )
    return


@app.cell
def _(df, pl):
    (df
     .with_columns(buy_freq=pl.col('account_name').len().over('account_name'))
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Finally, let's determine which customers visited the store the most and bought something.""")
    return


@app.cell
def _(df, pl):
    (df
     .with_columns(buy_freq=pl.col('account_name').len().over('account_name'))
     .filter(pl.col('buy_freq') == pl.col('buy_freq').max())
     .select('account_name','buy_freq')
     .unique()
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""There's more you can do with aggregations in Polars such as [sorting with aggregations](https://docs.pola.rs/user-guide/expressions/aggregation/#sorting). We hope that in this notebook, we've armed you with the tools to get started.""")
    return


if __name__ == "__main__":
    app.run()