Spaces:
Running
Running
File size: 32,811 Bytes
33b7a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "altair==5.5.0",
# "beautifulsoup4==4.13.3",
# "httpx==0.28.1",
# "marimo",
# "nest-asyncio==1.6.0",
# "numba==0.61.0",
# "numpy==2.1.3",
# "polars==1.24.0",
# ]
# ///
import marimo
__generated_with = "0.11.17"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# User-Defined Functions
_By [PΓ©ter Ferenc Gyarmati](http://github.com/peter-gy)_.
Throughout the previous chapters, you've seen how Polars provides a comprehensive set of built-in expressions for flexible data transformation. But what happens when you need something *more*? Perhaps your project has unique requirements, or you need to integrate functionality from an external Python library. This is where User-Defined Functions (UDFs) come into play, allowing you to extend Polars with your own custom logic.
In this chapter, we'll weigh the performance trade-offs of UDFs, pinpoint situations where they're truly beneficial, and explore different ways to effectively incorporate them into your Polars workflows. We'll walk through a complete, practical example.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## βοΈ The Cost of UDFs
> Performance vs. Flexibility
Polars' built-in expressions are highly optimized for speed and parallel processing. User-defined functions (UDFs), however, introduce a significant performance overhead because they rely on standard Python code, which often runs in a single thread and bypasses Polars' logical optimizations. Therefore, always prioritize native Polars operations *whenever possible*.
However, UDFs become inevitable when you need to:
- **Integrate external libraries:** Use functionality not directly available in Polars.
- **Implement custom logic:** Handle complex transformations that can't be easily expressed with Polars' built-in functions.
Let's dive into a real-world project where UDFs were the only way to get the job done, demonstrating a scenario where native Polars expressions simply weren't sufficient.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## π Project Overview
> Scraping and Analyzing Observable Notebook Statistics
If you're into data visualization, you've probably seen [D3.js](https://d3js.org/) and [Observable Plot](https://observablehq.com/plot/). Both have extensive galleries showcasing amazing visualizations. Each gallery item is a standalone [Observable notebook](https://observablehq.com/documentation/notebooks/), with metrics like stars, comments, and forks β indicators of popularity. But getting and analyzing these statistics directly isn't straightforward. We'll need to scrape the web.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.hstack(
[
mo.image(
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_d3-gallery.png?0",
width=600,
caption="Screenshot of https://observablehq.com/@d3/gallery",
),
mo.image(
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_plot-gallery.png?0",
width=600,
caption="Screenshot of https://observablehq.com/@observablehq/plot-gallery",
),
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Our goal is to use Polars UDFs to fetch the HTML content of these gallery pages. Then, we'll use the `BeautifulSoup` Python library to parse the HTML and extract the relevant metadata. After some data wrangling with native Polars expressions, we'll have a DataFrame listing each visualization notebook. Then, we'll use another UDF to retrieve the number of likes, forks, and comments for each notebook. Finally, we will create our own high-performance UDF to implement a custom notebook ranking scheme. This will involve multiple steps, showcasing different UDF approaches.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.mermaid('''
graph LR;
url_df --> |"UDF: Fetch HTML"| html_df
html_df --> |"UDF: Parse with BeautifulSoup"| parsed_html_df
parsed_html_df --> |"Native Polars: Extract Data"| notebooks_df
notebooks_df --> |"UDF: Get Notebook Stats"| notebook_stats_df
notebook_stats_df --> |"Numba UDF: Compute Popularity"| notebook_popularity_df
''')
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Our starting point, `url_df`, is a simple DataFrame with a single `url` column containing the URLs of the D3 and Observable Plot gallery notebooks.""")
return
@app.cell(hide_code=True)
def _(pl):
url_df = pl.from_dict(
{
"url": [
"https://observablehq.com/@d3/gallery",
"https://observablehq.com/@observablehq/plot-gallery",
]
}
)
url_df
return (url_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## π Element-Wise UDFs
> Processing Value by Value
The most common way to use UDFs is to apply them element-wise. This means our custom function will execute for *each individual row* in a specified column. Our first task is to fetch the HTML content for each URL in `url_df`.
We'll define a Python function that takes a `url` (a string) as input, uses the `httpx` library (an HTTP client) to fetch the content, and returns the HTML as a string. We then integrate this function into Polars using the [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) expression.
You'll notice we have to explicitly specify the `return_dtype`. This is *crucial*. Polars doesn't automatically know what our custom function will return. We're responsible for defining the function's logic and, therefore, its output type. By providing the `return_dtype`, we help Polars maintain its internal representation of the DataFrame's schema, enabling query optimization. Think of it as giving Polars a "heads-up" about the data type it should expect.
"""
)
return
@app.cell(hide_code=True)
def _(httpx, pl, url_df):
html_df = url_df.with_columns(
html=pl.col("url").map_elements(
lambda url: httpx.get(url).text,
return_dtype=pl.String,
)
)
html_df
return (html_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Now, `html_df` holds the HTML for each URL. We need to parse it. Again, a UDF is the way to go. Parsing HTML with native Polars expressions would be a nightmare! Instead, we'll use the [`beautifulsoup4`](https://pypi.org/project/beautifulsoup4/) library, a standard tool for this.
These Observable pages are built with [Next.js](https://nextjs.org/), which helpfully serializes page properties as JSON within the HTML. This simplifies our UDF: we'll extract the raw JSON from the `<script id="__NEXT_DATA__" type="application/json">` tag. We'll use [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) again. For clarity, we'll define this UDF as a named function, `extract_nextjs_data`, since it's a bit more complex than a simple HTTP request.
"""
)
return
@app.cell(hide_code=True)
def _(BeautifulSoup):
def extract_nextjs_data(html: str) -> str:
soup = BeautifulSoup(html, "html.parser")
script_tag = soup.find("script", id="__NEXT_DATA__")
return script_tag.text
return (extract_nextjs_data,)
@app.cell(hide_code=True)
def _(extract_nextjs_data, html_df, pl):
parsed_html_df = html_df.select(
"url",
next_data=pl.col("html").map_elements(
extract_nextjs_data,
return_dtype=pl.String,
),
)
parsed_html_df
return (parsed_html_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""With some data wrangling of the raw JSON (using *native* Polars expressions!), we get `notebooks_df`, containing the metadata for each notebook.""")
return
@app.cell(hide_code=True)
def _(parsed_html_df, pl):
notebooks_df = (
parsed_html_df.select(
"url",
# We extract the content of every cell present in the gallery notebooks
cell=pl.col("next_data")
.str.json_path_match("$.props.pageProps.initialNotebook.nodes")
.str.json_decode()
.list.eval(pl.element().struct.field("value")),
)
# We want one row per cell
.explode("cell")
# Only keep categorized notebook listing cells starting with H3
.filter(pl.col("cell").str.starts_with("### "))
# Split up the cells into [heading, description, config] sections
.with_columns(pl.col("cell").str.split("\n\n"))
.select(
gallery_url="url",
# Text after the '### ' heading, ignore '<!--' comments'
category=pl.col("cell").list.get(0).str.extract(r"###\s+(.*?)(?:\s+<!--.*?-->|$)"),
# Paragraph after heading
description=pl.col("cell")
.list.get(1)
.str.strip_chars(" ")
.str.replace_all("](/", "](https://observablehq.com/", literal=True),
# Parsed notebook config from ${preview([{...}])}
notebooks=pl.col("cell")
.list.get(2)
.str.strip_prefix("${previews([")
.str.strip_suffix("]})}")
.str.strip_chars(" \n")
.str.split("},")
# Simple regex-based attribute extraction from JS/JSON objects like
# ```js
# {
# path: "@d3/spilhaus-shoreline-map",
# "thumbnail": "66a87355e205d820...",
# title: "Spilhaus shoreline map",
# "author": "D3"
# }
# ```
.list.eval(
pl.struct(
*(
pl.element()
.str.extract(f'(?:"{key}"|{key})\s*:\s*"([^"]*)"')
.alias(key)
for key in ["path", "thumbnail", "title"]
)
)
),
)
.explode("notebooks")
.unnest("notebooks")
.filter(pl.col("path").is_not_null())
# Final projection to end up with directly usable values
.select(
pl.concat_str(
[
pl.lit("https://static.observableusercontent.com/thumbnail/"),
"thumbnail",
pl.lit(".jpg"),
],
).alias("notebook_thumbnail_src"),
"category",
"title",
"description",
pl.concat_str(
[pl.lit("https://observablehq.com"), "path"], separator="/"
).alias("notebook_url"),
)
)
notebooks_df
return (notebooks_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## π¦ Batch-Wise UDFs
> Processing Entire Series
`map_elements` calls the UDF for *each row*. Fine for our tiny, two-rows-tall `url_df`. But `notebooks_df` has almost 400 rows! Individual HTTP requests for each would be painfully slow.
We want stats for each notebook in `notebooks_df`. To avoid sequential requests, we'll use Polars' [`map_batches`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_batches.html). This lets us process an *entire Series* (a column) at once.
Our UDF, `fetch_html_batch`, will take a *Series* of URLs and use `asyncio` to make concurrent requests β a huge performance boost.
"""
)
return
@app.cell(hide_code=True)
def _(Iterable, asyncio, httpx, mo):
async def _fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
async with httpx.AsyncClient(timeout=15) as client:
res = await asyncio.gather(*(client.get(url) for url in urls))
return tuple((r.text for r in res))
@mo.cache
def fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
return asyncio.run(_fetch_html_batch(urls))
return (fetch_html_batch,)
@app.cell(hide_code=True)
def _(mo):
mo.callout(
mo.md("""
Since `fetch_html_batch` is a pure Python function and performs multiple network requests, it's a good candidate for caching. We use [`mo.cache`](https://docs.marimo.io/api/caching/#marimo.cache) to avoid redundant requests to the same URL. This is a simple way to improve performance without modifying the core logic.
"""
),
kind="info",
)
return
@app.cell(hide_code=True)
def _(mo, notebooks_df):
category = mo.ui.dropdown(
notebooks_df.sort("category").get_column("category"),
value="Maps",
)
return (category,)
@app.cell(hide_code=True)
def _(category, extract_nextjs_data, fetch_html_batch, notebooks_df, pl):
notebook_stats_df = (
# Setting filter upstream to limit number of concurrent HTTP requests
notebooks_df.filter(category=category.value)
.with_columns(
notebook_html=pl.col("notebook_url")
.map_batches(fetch_html_batch, return_dtype=pl.List(pl.String))
.explode()
)
.with_columns(
notebook_data=pl.col("notebook_html")
.map_elements(
extract_nextjs_data,
return_dtype=pl.String,
)
.str.json_path_match("$.props.pageProps.initialNotebook")
.str.json_decode()
)
.drop("notebook_html")
.with_columns(
*[
pl.col("notebook_data").struct.field(key).alias(key)
for key in ["likes", "forks", "comments", "license"]
]
)
.drop("notebook_data")
.with_columns(pl.col("comments").list.len())
.select(
pl.exclude("description", "notebook_url"),
"description",
"notebook_url",
)
.sort("likes", descending=True)
)
return (notebook_stats_df,)
@app.cell(hide_code=True)
def _(mo, notebook_stats_df):
notebooks = mo.ui.table(notebook_stats_df, selection='single', initial_selection=[2], page_size=5)
notebook_height = mo.ui.slider(start=400, stop=2000, value=825, step=25, show_value=True, label='Notebook Height')
return notebook_height, notebooks
@app.cell(hide_code=True)
def _():
def nb_iframe(notebook_url: str, height=825) -> str:
embed_url = notebook_url.replace(
"https://observablehq.com", "https://observablehq.com/embed"
)
return f'<iframe width="100%" height="{height}" frameborder="0" src="{embed_url}?cell=*"></iframe>'
return (nb_iframe,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now that we have access to notebook-level statistics, we can rank the visualizations by the number of likes they received & display them interactively.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.callout("π‘ Explore the visualizations by paging through the table below and selecting any of its rows.")
return
@app.cell(hide_code=True)
def _(category, mo, nb_iframe, notebook_height, notebooks):
notebook = notebooks.value.to_dicts()[0]
mo.vstack(
[
mo.hstack([category, notebook_height]),
notebooks,
mo.md(f"{notebook['description']}"),
mo.md('---'),
mo.md(nb_iframe(notebook["notebook_url"], notebook_height.value)),
]
)
return (notebook,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## βοΈ Row-Wise UDFs
> Accessing All Columns at Once
Sometimes, you need to work with *all* columns of a row at once. This is where [`map_rows`](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.map_rows.html) comes in. It operates directly on the DataFrame, passing each row to your UDF *as a tuple*.
Below, `create_notebook_summary` takes a row from `notebook_stats_df` (as a tuple) and returns a formatted Markdown string summarizing the notebook's key stats. We're essentially reducing the DataFrame to a single column. While this *could* be done with native Polars expressions, it would be much more cumbersome. This example demonstrates a case where a row-wise UDF simplifies the code, even if the underlying operation isn't inherently complex.
"""
)
return
@app.cell(hide_code=True)
def _():
def create_notebook_summary(row: tuple) -> str:
(
thumbnail_src,
category,
title,
likes,
forks,
comments,
license,
description,
notebook_url,
) = row
return (
f"""
### [{title}]({notebook_url})
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 12px; margin: 12px 0;">
<div>β <strong>Likes:</strong> {likes}</div>
<div>βοΈ <strong>Forks:</strong> {forks}</div>
<div>π¬ <strong>Comments:</strong> {comments}</div>
<div>βοΈ <strong>License:</strong> {license}</div>
</div>
<a href="{notebook_url}" target="_blank">
<img src="{thumbnail_src}" style="height: 300px;" />
<a/>
""".strip('\n')
)
return (create_notebook_summary,)
@app.cell(hide_code=True)
def _(create_notebook_summary, notebook_stats_df, pl):
notebook_summary_df = notebook_stats_df.map_rows(
create_notebook_summary,
return_dtype=pl.String,
).rename({"map": "summary"})
notebook_summary_df.head(1)
return (notebook_summary_df,)
@app.cell(hide_code=True)
def _(mo):
mo.callout("π‘ You can explore individual notebook statistics through the carousel. Discover the visualization's source code by clicking the notebook title or the thumbnail.")
return
@app.cell(hide_code=True)
def _(mo, notebook_summary_df):
mo.carousel(
[
mo.lazy(mo.md(summary))
for summary in notebook_summary_df.get_column("summary")
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## π Higher-performance UDFs
> Leveraging Numba to Make Python Fast
Python code doesn't *always* mean slow code. While UDFs *often* introduce performance overhead, there are exceptions. NumPy's universal functions ([`ufuncs`](https://numpy.org/doc/stable/reference/ufuncs.html)) and generalized universal functions ([`gufuncs`](https://numpy.org/neps/nep-0005-generalized-ufuncs.html)) provide high-performance operations on NumPy arrays, thanks to low-level implementations.
But NumPy's built-in functions are predefined. We can't easily use them for *custom* logic. Enter [`numba`](https://numba.pydata.org/). Numba is a just-in-time (JIT) compiler that translates Python functions into optimized machine code *at runtime*. It provides decorators like [`numba.guvectorize`](https://numba.readthedocs.io/en/stable/user/vectorize.html#the-guvectorize-decorator) that let us create our *own* high-performance `gufuncs` β *without* writing low-level code!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Let's create a custom popularity metric to rank notebooks, considering likes, forks, *and* comments (not just likes). We'll define `weighted_popularity_numba`, decorated with `@numba.guvectorize`. The decorator arguments specify that we're taking three integer vectors of length `n` and returning a float vector of length `n`.
The weighted popularity score for each notebook is calculated using the following formula:
$$
\begin{equation}
\text{score}_i = w_l \cdot l_i^{f} + w_f \cdot f_i^{f} + w_c \cdot c_i^{f}
\end{equation}
$$
with:
"""
)
return
@app.cell(hide_code=True)
def _(mo, non_linear_factor, weight_comments, weight_forks, weight_likes):
mo.md(rf"""
| Symbol | Description |
|--------|-------------|
| $\text{{score}}_i$ | Popularity score for the *i*-th notebook |
| $w_l = {weight_likes.value}$ | Weight for likes |
| $l_i$ | Number of likes for the *i*-th notebook |
| $w_f = {weight_forks.value}$ | Weight for forks |
| $f_i$ | Number of forks for the *i*-th notebook |
| $w_c = {weight_comments.value}$ | Weight for comments |
| $c_i$ | Number of comments for the *i*-th notebook |
| $f = {non_linear_factor.value}$ | Non-linear factor (exponent) |
""")
return
@app.cell(hide_code=True)
def _(mo):
weight_likes = mo.ui.slider(
start=0.1,
stop=1,
value=0.5,
step=0.1,
show_value=True,
label="β Weight for Likes",
)
weight_forks = mo.ui.slider(
start=0.1,
stop=1,
value=0.3,
step=0.1,
show_value=True,
label="βοΈ Weight for Forks",
)
weight_comments = mo.ui.slider(
start=0.1,
stop=1,
value=0.5,
step=0.1,
show_value=True,
label="π¬ Weight for Comments",
)
non_linear_factor = mo.ui.slider(
start=1,
stop=2,
value=1.2,
step=0.1,
show_value=True,
label="π’ Non-Linear Factor",
)
return non_linear_factor, weight_comments, weight_forks, weight_likes
@app.cell(hide_code=True)
def _(
non_linear_factor,
np,
numba,
weight_comments,
weight_forks,
weight_likes,
):
w_l = weight_likes.value
w_f = weight_forks.value
w_c = weight_comments.value
nlf = non_linear_factor.value
@numba.guvectorize(
[(numba.int64[:], numba.int64[:], numba.int64[:], numba.float64[:])],
"(n), (n), (n) -> (n)",
)
def weighted_popularity_numba(
likes: np.ndarray,
forks: np.ndarray,
comments: np.ndarray,
out: np.ndarray,
):
for i in range(likes.shape[0]):
out[i] = (
w_l * (likes[i] ** nlf)
+ w_f * (forks[i] ** nlf)
+ w_c * (comments[i] ** nlf)
)
return nlf, w_c, w_f, w_l, weighted_popularity_numba
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We apply our JIT-compiled UDF using `map_batches`, as before. The key is that we're passing entire columns directly to `weighted_popularity_numba`. Polars and Numba handle the conversion to NumPy arrays behind the scenes. This direct integration is a major benefit of using `guvectorize`.""")
return
@app.cell(hide_code=True)
def _(notebook_stats_df, pl, weighted_popularity_numba):
notebook_popularity_df = (
notebook_stats_df.select(
pl.col("notebook_thumbnail_src").alias("thumbnail"),
"title",
"likes",
"forks",
"comments",
popularity=pl.struct(["likes", "forks", "comments"]).map_batches(
lambda obj: weighted_popularity_numba(
obj.struct.field("likes"),
obj.struct.field("forks"),
obj.struct.field("comments"),
),
return_dtype=pl.Float64,
),
url="notebook_url",
)
)
return (notebook_popularity_df,)
@app.cell(hide_code=True)
def _(mo):
mo.callout("π‘ Adjust the hyperparameters of the popularity ranking UDF. How do the weights and non-linear factor affect the notebook rankings?")
return
@app.cell(hide_code=True)
def _(
mo,
non_linear_factor,
notebook_popularity_df,
weight_comments,
weight_forks,
weight_likes,
):
mo.vstack(
[
mo.hstack([weight_likes, weight_forks]),
mo.hstack([weight_comments, non_linear_factor]),
notebook_popularity_df,
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""As the slope chart below demonstrates, this new ranking strategy significantly changes the notebook order, as it considers forks and comments, not just likes.""")
return
@app.cell(hide_code=True)
def _(alt, notebook_popularity_df, pl):
notebook_ranks_df = (
notebook_popularity_df.sort("likes", descending=True)
.with_row_index("rank_by_likes")
.with_columns(pl.col("rank_by_likes") + 1)
.sort("popularity", descending=True)
.with_row_index("rank_by_popularity")
.with_columns(pl.col("rank_by_popularity") + 1)
.select("thumbnail", "title", "rank_by_popularity", "rank_by_likes")
.unpivot(
["rank_by_popularity", "rank_by_likes"],
index="title",
variable_name="strategy",
value_name="rank",
)
)
# Slope chart to visualize rank differences by strategy
lines = notebook_ranks_df.plot.line(
x="strategy:O",
y="rank:Q",
color="title:N",
)
points = notebook_ranks_df.plot.point(
x="strategy:O",
y="rank:Q",
color=alt.Color("title:N", legend=None),
fill="title:N",
)
(points + lines).properties(width=400)
return lines, notebook_ranks_df, points
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## β±οΈ Quantifying the Overhead
> UDF Performance Comparison
To truly understand the performance implications of using UDFs, let's conduct a benchmark. We'll create a DataFrame with random numbers and perform the same numerical operation using four different methods:
1. **Native Polars:** Using Polars' built-in expressions.
2. **`map_elements`:** Applying a Python function element-wise.
3. **`map_batches`:** **Applying** a Python function to the entire Series.
4. **`map_batches` with Numba:** Applying a JIT-compiled function to batches, similar to a generalized universal function.
We'll use a simple, but non-trivial, calculation: `result = (x * 2.5 + 5) / (x + 1)`. This involves multiplication, addition, and division, giving us a realistic representation of a common numerical operation. We'll use the `timeit` module, to accurately measure execution times over multiple trials.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.callout("π‘ Tweak the benchmark parameters to explore how execution times change with different sample sizes and trial counts. Do you notice anything surprising as you decrease the number of samples?")
return
@app.cell(hide_code=True)
def _(benchmark_plot, mo, num_samples, num_trials):
mo.vstack(
[
mo.hstack([num_samples, num_trials]),
mo.md(
f"""---
Performance comparison over **{num_trials.value:,} trials** with **{num_samples.value:,} samples**.
> Lower execution times are better.
"""
),
benchmark_plot,
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
As anticipated, the `Batch-Wise UDF (Python)` and `Element-Wise UDF` exhibit significantly worse performance, essentially acting as pure-Python for-each loops.
However, when Python serves as an interface to lower-level, high-performance libraries, we observe substantial improvements. The `Batch-Wise UDF (NumPy)` lags behind both `Batch-Wise UDF (Numba)` and `Native Polars`, but it still represents a considerable improvement over pure-Python UDFs due to its vectorized computations.
Numba's Just-In-Time (JIT) compilation delivers a dramatic performance boost, achieving speeds comparable to native Polars expressions. This demonstrates that UDFs, particularly when combined with tools like Numba, don't inevitably lead to bottlenecks in numerical computations.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
num_samples = mo.ui.slider(
start=1_000,
stop=1_000_000,
value=250_000,
step=1000,
show_value=True,
debounce=True,
label="Number of Samples",
)
num_trials = mo.ui.slider(
start=50,
stop=1_000,
value=100,
step=50,
show_value=True,
debounce=True,
label="Number of Trials",
)
return num_samples, num_trials
@app.cell(hide_code=True)
def _(np, num_samples, pl):
rng = np.random.default_rng(42)
sample_df = pl.from_dict({"x": rng.random(num_samples.value)})
return rng, sample_df
@app.cell(hide_code=True)
def _(np, num_trials, numba, pl, sample_df, timeit):
def run_native():
sample_df.with_columns(
result_native=(pl.col("x") * 2.5 + 5) / (pl.col("x") + 1)
)
def _calculate_elementwise(x: float) -> float:
return (x * 2.5 + 5) / (x + 1)
def run_map_elements():
sample_df.with_columns(
result_map_elements=pl.col("x").map_elements(
_calculate_elementwise,
return_dtype=pl.Float64,
)
)
def _calculate_batchwise_numpy(x_series: pl.Series) -> pl.Series:
x_array = x_series.to_numpy()
result_array = (x_array * 2.5 + 5) / (x_array + 1)
return pl.Series(result_array)
def run_map_batches_numpy():
sample_df.with_columns(
result_map_batches_numpy=pl.col("x").map_batches(
_calculate_batchwise_numpy,
return_dtype=pl.Float64,
)
)
def _calculate_batchwise_python(x_series: pl.Series) -> pl.Series:
x_array = x_series.to_list()
result_array = [_calculate_elementwise(x) for x in x_array]
return pl.Series(result_array)
def run_map_batches_python():
sample_df.with_columns(
result_map_batches_python=pl.col("x").map_batches(
_calculate_batchwise_python,
return_dtype=pl.Float64,
)
)
@numba.guvectorize([(numba.float64[:], numba.float64[:])], "(n) -> (n)")
def _calculate_batchwise_numba(x: np.ndarray, out: np.ndarray):
for i in range(x.shape[0]):
out[i] = (x[i] * 2.5 + 5) / (x[i] + 1)
def run_map_batches_numba():
sample_df.with_columns(
result_map_batches_numba=pl.col("x").map_batches(
_calculate_batchwise_numba,
return_dtype=pl.Float64,
)
)
def time_method(callable_name: str, number=num_trials.value) -> float:
fn = globals()[callable_name]
return timeit.timeit(fn, number=number)
return (
run_map_batches_numba,
run_map_batches_numpy,
run_map_batches_python,
run_map_elements,
run_native,
time_method,
)
@app.cell(hide_code=True)
def _(alt, pl, time_method):
benchmark_df = pl.from_dicts(
[
{
"title": "Native Polars",
"callable_name": "run_native",
},
{
"title": "Element-Wise UDF",
"callable_name": "run_map_elements",
},
{
"title": "Batch-Wise UDF (NumPy)",
"callable_name": "run_map_batches_numpy",
},
{
"title": "Batch-Wise UDF (Python)",
"callable_name": "run_map_batches_python",
},
{
"title": "Batch-Wise UDF (Numba)",
"callable_name": "run_map_batches_numba",
},
]
).with_columns(
time=pl.col("callable_name").map_elements(
time_method, return_dtype=pl.Float64
)
)
benchmark_plot = benchmark_df.plot.bar(
x=alt.X("title:N", title="Method", sort="-y"),
y=alt.Y("time:Q", title="Execution Time (s)", axis=alt.Axis(format=".3f")),
).properties(width=400)
return benchmark_df, benchmark_plot
@app.cell(hide_code=True)
def _():
import asyncio
import timeit
from typing import Iterable
import altair as alt
import httpx
import marimo as mo
import nest_asyncio
import numba
import numpy as np
from bs4 import BeautifulSoup
import polars as pl
# Fixes RuntimeError: asyncio.run() cannot be called from a running event loop
nest_asyncio.apply()
return (
BeautifulSoup,
Iterable,
alt,
asyncio,
httpx,
mo,
nest_asyncio,
np,
numba,
pl,
timeit,
)
if __name__ == "__main__":
app.run()
|