File size: 6,030 Bytes
59739a1
 
 
 
 
 
 
 
 
902a2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa97cc
 
 
902a2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daee87c
902a2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "marimo",
#     "matplotlib==3.10.0",
#     "numpy==2.2.2",
# ]
# ///

import marimo

__generated_with = "0.11.2"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    return (mo,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Axioms of Probability

        Probability theory is built on three fundamental axioms, known as the [Kolmogorov axioms](https://en.wikipedia.org/wiki/Probability_axioms). These axioms form 
        the mathematical foundation for all of probability theory[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/probability).

        Let's explore each axiom and understand why they make intuitive sense:
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## The Three Axioms

        | Axiom | Mathematical Form | Meaning |
        |-------|------------------|----------|
        | **Axiom 1** | $0 \leq P(E) \leq 1$ | All probabilities are between 0 and 1 |
        | **Axiom 2** | $P(S) = 1$ | The probability of the sample space is 1 |
        | **Axiom 3** | $P(E \cup F) = P(E) + P(F)$ | For mutually exclusive events, probabilities add |

        where the set $S$ is the sample space (all possible outcomes), and $E$ and $F$ are sets that represent events. The notation $P(E)$ denotes the probability of $E$, which you can interpret as the chance that something happens. $P(E) = 0$ means that the event cannot happen, while $P(E) = 1$ means the event will happen no matter what; $P(E) = 0.5$ means that $E$ has a 50% chance of happening.
        
        For an example, when rolling a fair six-sided die once, the sample space $S$ is the set of die faces ${1, 2, 3, 4, 5, 6}$, and there are many possible events; we'll see some examples below.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Understanding Through Examples

        Let's explore these axioms using a simple experiment: rolling a fair six-sided die.
        We'll use this to demonstrate why each axiom makes intuitive sense.
        """
    )
    return


@app.cell
def _(event):
    event
    return


@app.cell(hide_code=True)
def _(mo):
    # Create an interactive widget to explore different events

    event = mo.ui.dropdown(

        options=[

            "Rolling an even number (2,4,6)",

            "Rolling an odd number (1,3,5)",

            "Rolling a prime number (2,3,5)",

            "Rolling less than 4 (1,2,3)",

            "Any possible roll (1,2,3,4,5,6)",

        ],

        value="Rolling an even number (2,4,6)",

        label="Select an event"

    )
    return (event,)


@app.cell(hide_code=True)
def _(event, mo, np, plt):
    # Define the probabilities for each event
    event_map = {
        "Rolling an even number (2,4,6)": [2, 4, 6],
        "Rolling an odd number (1,3,5)": [1, 3, 5],
        "Rolling a prime number (2,3,5)": [2, 3, 5],
        "Rolling less than 4 (1,2,3)": [1, 2, 3],
        "Any possible roll (1,2,3,4,5,6)": [1, 2, 3, 4, 5, 6],
    }

    # Get outcomes directly from the event value
    outcomes = event_map[event.value]
    prob = len(outcomes) / 6

    # Visualize the probability
    dice = np.arange(1, 7)
    colors = ['#1f77b4' if d in outcomes else '#d3d3d3' for d in dice]

    fig, ax = plt.subplots(figsize=(8, 2))
    ax.bar(dice, np.ones_like(dice), color=colors)
    ax.set_xticks(dice)
    ax.set_yticks([])
    ax.set_title(f"P(Event) = {prob:.2f}")

    # Add explanation
    explanation = mo.md(f"""
    **Event**: {event.value}

    **Probability**: {prob:.2f}

    **Favorable outcomes**: {outcomes}

    This example demonstrates:

    - Axiom 1: The probability is between 0 and 1

    - Axiom 2: For the sample space, P(S) = 1

    - Axiom 3: The probability is the sum of individual outcome probabilities
    """)

    mo.hstack([plt.gcf(), explanation])
    return ax, colors, dice, event_map, explanation, fig, outcomes, prob


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Why These Axioms Matter

        These axioms are more than just rules - they provide the foundation for all of probability theory:

        1. **Non-negativity** (Axiom 1) makes intuitive sense: you can't have a negative number of occurrences 
           in any experiment.

        2. **Normalization** (Axiom 2) ensures that something must happen - the total probability must be 1.

        3. **Additivity** (Axiom 3) lets us build complex probabilities from simple ones, but only for events 
           that can't happen together (mutually exclusive events).

        From these simple rules, we can derive all the powerful tools of probability theory that are used in 
        statistics, machine learning, and other fields.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 🤔 Test Your Understanding

        Consider rolling two dice. Which of these statements follow from the axioms?

        <details>
        <summary>1. P(sum is 13) = 0</summary>

        ✅ Correct! This follows from Axiom 1. Since no combination of dice can sum to 13, 
        the probability must be non-negative but can be 0.
        </details>

        <details>
        <summary>2. P(sum is 7) + P(sum is not 7) = 1</summary>

        ✅ Correct! This follows from Axioms 2 and 3. These events are mutually exclusive and cover 
        the entire sample space.
        </details>

        <details>
        <summary>3. P(first die is 6 or second die is 6) = P(first die is 6) + P(second die is 6)</summary>

        ❌ Incorrect! This doesn't follow from Axiom 3 because the events are not mutually exclusive - 
        you could roll (6,6).
        </details>
        """
    )
    return


@app.cell
def _():
    import numpy as np
    import matplotlib.pyplot as plt
    return np, plt


if __name__ == "__main__":
    app.run()