Spaces:
Running
Running
File size: 21,174 Bytes
928c844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.3",
# "scipy==1.15.2",
# "wigglystuff==0.1.10",
# ]
# ///
import marimo
__generated_with = "0.11.20"
app = marimo.App(width="medium", app_title="Variance")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Variance
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/variance/), by Stanford professor Chris Piech._
In our previous exploration of random variables, we learned about expectation - a measure of central tendency. However, knowing the average value alone doesn't tell us everything about a distribution. Consider these questions:
- How spread out are the values around the mean?
- How reliable is the expectation as a predictor of individual outcomes?
- How much do individual samples typically deviate from the average?
This is where **variance** comes in - it measures the spread or dispersion of a random variable around its expected value.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Definition of Variance
The variance of a random variable $X$ with expected value $\mu = E[X]$ is defined as:
$$\text{Var}(X) = E[(X-\mu)^2]$$
This definition captures the average squared deviation from the mean. There's also an equivalent, often more convenient formula:
$$\text{Var}(X) = E[X^2] - (E[X])^2$$
/// tip
The second formula is usually easier to compute, as it only requires calculating $E[X^2]$ and $E[X]$, rather than working with deviations from the mean.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Intuition Through Example
Let's look at a real-world example that illustrates why variance is important. Consider three different groups of graders evaluating assignments in a massive online course. Each grader has their own "grading distribution" - their pattern of assigning scores to work that deserves a 70/100.
The visualization below shows the probability distributions for three types of graders. Try clicking and dragging the blue numbers to adjust the parameters and see how they affect the variance.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
/// TIP
Try adjusting the blue numbers above to see how:
- Increasing spread increases variance
- The mixture ratio affects how many outliers appear in Grader C's distribution
- Changing the true grade shifts all distributions but maintains their relative variances
"""
)
return
@app.cell(hide_code=True)
def _(controls):
controls
return
@app.cell(hide_code=True)
def _(
grader_a_spread,
grader_b_spread,
grader_c_mix,
np,
plt,
stats,
true_grade,
):
# Create data for three grader distributions
_grader_x = np.linspace(40, 100, 200)
# Calculate actual variances
var_a = grader_a_spread.amount**2
var_b = grader_b_spread.amount**2
var_c = (1-grader_c_mix.amount) * 3**2 + grader_c_mix.amount * 8**2 + \
grader_c_mix.amount * (1-grader_c_mix.amount) * (8-3)**2 # Mixture variance formula
# Grader A: Wide spread around true grade
grader_a = stats.norm.pdf(_grader_x, loc=true_grade.amount, scale=grader_a_spread.amount)
# Grader B: Narrow spread around true grade
grader_b = stats.norm.pdf(_grader_x, loc=true_grade.amount, scale=grader_b_spread.amount)
# Grader C: Mixture of distributions
grader_c = (1-grader_c_mix.amount) * stats.norm.pdf(_grader_x, loc=true_grade.amount, scale=3) + \
grader_c_mix.amount * stats.norm.pdf(_grader_x, loc=true_grade.amount, scale=8)
grader_fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
# Plot each distribution
ax1.fill_between(_grader_x, grader_a, alpha=0.3, color='green', label=f'Var ≈ {var_a:.2f}')
ax1.axvline(x=true_grade.amount, color='black', linestyle='--', label='True Grade')
ax1.set_title('Grader A: High Variance')
ax1.set_xlabel('Grade')
ax1.set_ylabel('Pr(G = g)')
ax1.set_ylim(0, max(grader_a)*1.1)
ax2.fill_between(_grader_x, grader_b, alpha=0.3, color='blue', label=f'Var ≈ {var_b:.2f}')
ax2.axvline(x=true_grade.amount, color='black', linestyle='--')
ax2.set_title('Grader B: Low Variance')
ax2.set_xlabel('Grade')
ax2.set_ylim(0, max(grader_b)*1.1)
ax3.fill_between(_grader_x, grader_c, alpha=0.3, color='purple', label=f'Var ≈ {var_c:.2f}')
ax3.axvline(x=true_grade.amount, color='black', linestyle='--')
ax3.set_title('Grader C: Mixed Distribution')
ax3.set_xlabel('Grade')
ax3.set_ylim(0, max(grader_c)*1.1)
# Add annotations to explain what's happening
ax1.annotate('Wide spread = high variance',
xy=(true_grade.amount, max(grader_a)*0.5),
xytext=(true_grade.amount-15, max(grader_a)*0.7),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
ax2.annotate('Narrow spread = low variance',
xy=(true_grade.amount, max(grader_b)*0.5),
xytext=(true_grade.amount+8, max(grader_b)*0.7),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
ax3.annotate('Mixture creates outliers',
xy=(true_grade.amount+15, grader_c[np.where(_grader_x >= true_grade.amount+15)[0][0]]),
xytext=(true_grade.amount+5, max(grader_c)*0.7),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
# Add legends and adjust layout
for _ax in [ax1, ax2, ax3]:
_ax.legend()
_ax.grid(alpha=0.2)
plt.tight_layout()
plt.gca()
return (
ax1,
ax2,
ax3,
grader_a,
grader_b,
grader_c,
grader_fig,
var_a,
var_b,
var_c,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
/// note
All three distributions have the same expected value (the true grade), but they differ significantly in their spread:
- **Grader A** has high variance - grades vary widely from the true value
- **Grader B** has low variance - grades consistently stay close to the true value
- **Grader C** has a mixture distribution - mostly consistent but with occasional extreme values
This illustrates why variance is crucial: two distributions can have the same mean but behave very differently in practice.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Computing Variance
Let's work through some concrete examples to understand how to calculate variance.
### Example 1: Fair Die Roll
Consider rolling a fair six-sided die. We'll calculate its variance step by step:
"""
)
return
@app.cell
def _(np):
# Define the die values and probabilities
die_values = np.array([1, 2, 3, 4, 5, 6])
die_probs = np.array([1/6] * 6)
# Calculate E[X]
expected_value = np.sum(die_values * die_probs)
# Calculate E[X^2]
expected_square = np.sum(die_values**2 * die_probs)
# Calculate Var(X) = E[X^2] - (E[X])^2
variance = expected_square - expected_value**2
# Calculate standard deviation
std_dev = np.sqrt(variance)
print(f"E[X] = {expected_value:.2f}")
print(f"E[X^2] = {expected_square:.2f}")
print(f"Var(X) = {variance:.2f}")
print(f"Standard Deviation = {std_dev:.2f}")
return (
die_probs,
die_values,
expected_square,
expected_value,
std_dev,
variance,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
/// NOTE
For a fair die:
- The expected value (3.50) tells us the average roll
- The variance (2.92) tells us how much typical rolls deviate from this average
- The standard deviation (1.71) gives us this spread in the original units
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Properties of Variance
Variance has several important properties that make it useful for analyzing random variables:
1. **Non-negativity**: $\text{Var}(X) \geq 0$ for any random variable $X$
2. **Variance of a constant**: $\text{Var}(c) = 0$ for any constant $c$
3. **Scaling**: $\text{Var}(aX) = a^2\text{Var}(X)$ for any constant $a$
4. **Translation**: $\text{Var}(X + b) = \text{Var}(X)$ for any constant $b$
5. **Independence**: If $X$ and $Y$ are independent, then $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$
Let's verify a property with an example.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Proof of Variance Formula
The equivalence of the two variance formulas is a fundamental result in probability theory. Here's the proof:
Starting with the definition $\text{Var}(X) = E[(X-\mu)^2]$ where $\mu = E[X]$:
\begin{align}
\text{Var}(X) &= E[(X-\mu)^2] \\
&= \sum_x(x-\mu)^2P(x) && \text{Definition of Expectation}\\
&= \sum_x (x^2 -2\mu x + \mu^2)P(x) && \text{Expanding the square}\\
&= \sum_x x^2P(x)- 2\mu \sum_x xP(x) + \mu^2 \sum_x P(x) && \text{Distributing the sum}\\
&= E[X^2]- 2\mu E[X] + \mu^2 && \text{Definition of expectation}\\
&= E[X^2]- 2(E[X])^2 + (E[X])^2 && \text{Since }\mu = E[X]\\
&= E[X^2]- (E[X])^2 && \text{Simplifying}
\end{align}
/// tip
This proof shows why the formula $\text{Var}(X) = E[X^2] - (E[X])^2$ is so useful - it's much easier to compute $E[X^2]$ and $E[X]$ separately than to work with deviations directly.
"""
)
return
@app.cell
def _(die_probs, die_values, np):
# Demonstrate scaling property
a = 2 # Scale factor
# Original variance
original_var = np.sum(die_values**2 * die_probs) - (np.sum(die_values * die_probs))**2
# Scaled random variable variance
scaled_values = a * die_values
scaled_var = np.sum(scaled_values**2 * die_probs) - (np.sum(scaled_values * die_probs))**2
print(f"Original Variance: {original_var:.2f}")
print(f"Scaled Variance (a={a}): {scaled_var:.2f}")
print(f"a^2 * Original Variance: {a**2 * original_var:.2f}")
print(f"Property holds: {abs(scaled_var - a**2 * original_var) < 1e-10}")
return a, original_var, scaled_values, scaled_var
@app.cell
def _():
# DIY : Prove more properties as shown above
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Standard Deviation
While variance is mathematically convenient, it has one practical drawback: its units are squared. For example, if we're measuring grades (0-100), the variance is in "grade points squared." This makes it hard to interpret intuitively.
The **standard deviation**, denoted by $\sigma$ or $\text{SD}(X)$, is the square root of variance:
$$\sigma = \sqrt{\text{Var}(X)}$$
/// tip
Standard deviation is often more intuitive because it's in the same units as the original data. For a normal distribution, approximately:
- 68% of values fall within 1 standard deviation of the mean
- 95% of values fall within 2 standard deviations
- 99.7% of values fall within 3 standard deviations
"""
)
return
@app.cell(hide_code=True)
def _(controls1):
controls1
return
@app.cell(hide_code=True)
def _(TangleSlider, mo):
normal_mean = mo.ui.anywidget(TangleSlider(
amount=0,
min_value=-5,
max_value=5,
step=0.5,
digits=1,
suffix=" units"
))
normal_std = mo.ui.anywidget(TangleSlider(
amount=1,
min_value=0.1,
max_value=3,
step=0.1,
digits=1,
suffix=" units"
))
# Create a grid layout for the controls
controls1 = mo.vstack([
mo.md("### Interactive Normal Distribution"),
mo.hstack([
mo.md("Adjust the parameters to see how standard deviation affects the shape of the distribution:"),
]),
mo.hstack([
mo.md("Mean (μ): "),
normal_mean,
mo.md(" Standard deviation (σ): "),
normal_std
], justify="start"),
])
return controls1, normal_mean, normal_std
@app.cell(hide_code=True)
def _(normal_mean, normal_std, np, plt, stats):
# data for normal distribution
_normal_x = np.linspace(-10, 10, 1000)
_normal_y = stats.norm.pdf(_normal_x, loc=normal_mean.amount, scale=normal_std.amount)
# ranges for standard deviation intervals
one_sigma_left = normal_mean.amount - normal_std.amount
one_sigma_right = normal_mean.amount + normal_std.amount
two_sigma_left = normal_mean.amount - 2 * normal_std.amount
two_sigma_right = normal_mean.amount + 2 * normal_std.amount
three_sigma_left = normal_mean.amount - 3 * normal_std.amount
three_sigma_right = normal_mean.amount + 3 * normal_std.amount
# Create the plot
normal_fig, normal_ax = plt.subplots(figsize=(10, 6))
# Plot the distribution
normal_ax.plot(_normal_x, _normal_y, 'b-', linewidth=2)
# stdev intervals
normal_ax.fill_between(_normal_x, 0, _normal_y, where=(_normal_x >= one_sigma_left) & (_normal_x <= one_sigma_right),
alpha=0.3, color='red', label='68% (±1σ)')
normal_ax.fill_between(_normal_x, 0, _normal_y, where=(_normal_x >= two_sigma_left) & (_normal_x <= two_sigma_right),
alpha=0.2, color='green', label='95% (±2σ)')
normal_ax.fill_between(_normal_x, 0, _normal_y, where=(_normal_x >= three_sigma_left) & (_normal_x <= three_sigma_right),
alpha=0.1, color='blue', label='99.7% (±3σ)')
# vertical lines for the mean and standard deviations
normal_ax.axvline(x=normal_mean.amount, color='black', linestyle='-', linewidth=1.5, label='Mean (μ)')
normal_ax.axvline(x=one_sigma_left, color='red', linestyle='--', linewidth=1)
normal_ax.axvline(x=one_sigma_right, color='red', linestyle='--', linewidth=1)
normal_ax.axvline(x=two_sigma_left, color='green', linestyle='--', linewidth=1)
normal_ax.axvline(x=two_sigma_right, color='green', linestyle='--', linewidth=1)
# annotations
normal_ax.annotate(f'μ = {normal_mean.amount:.2f}',
xy=(normal_mean.amount, max(_normal_y)*0.5),
xytext=(normal_mean.amount + 0.5, max(_normal_y)*0.8),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
normal_ax.annotate(f'σ = {normal_std.amount:.2f}',
xy=(one_sigma_right, stats.norm.pdf(one_sigma_right, loc=normal_mean.amount, scale=normal_std.amount)),
xytext=(one_sigma_right + 0.5, max(_normal_y)*0.6),
arrowprops=dict(facecolor='red', shrink=0.05, width=1))
# labels and title
normal_ax.set_xlabel('Value')
normal_ax.set_ylabel('Probability Density')
normal_ax.set_title(f'Normal Distribution with μ = {normal_mean.amount:.2f} and σ = {normal_std.amount:.2f}')
# legend and grid
normal_ax.legend()
normal_ax.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return (
normal_ax,
normal_fig,
one_sigma_left,
one_sigma_right,
three_sigma_left,
three_sigma_right,
two_sigma_left,
two_sigma_right,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
/// tip
The interactive visualization above demonstrates how standard deviation (σ) affects the shape of a normal distribution:
- The **red region** covers μ ± 1σ, containing approximately 68% of the probability
- The **green region** covers μ ± 2σ, containing approximately 95% of the probability
- The **blue region** covers μ ± 3σ, containing approximately 99.7% of the probability
This is known as the "68-95-99.7 rule" or the "empirical rule" and is a useful heuristic for understanding the spread of data.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Choose what you believe are the correct options in the questions below:
<details>
<summary>The variance of a random variable can be negative.</summary>
❌ False! Variance is defined as an expected value of squared deviations, and squares are always non-negative.
</details>
<details>
<summary>If X and Y are independent random variables, then Var(X + Y) = Var(X) + Var(Y).</summary>
✅ True! This is one of the key properties of variance for independent random variables.
</details>
<details>
<summary>Multiplying a random variable by 2 multiplies its variance by 2.</summary>
❌ False! Multiplying a random variable by a constant a multiplies its variance by a². So multiplying by 2 multiplies variance by 4.
</details>
<details>
<summary>Standard deviation is always equal to the square root of variance.</summary>
✅ True! By definition, standard deviation σ = √Var(X).
</details>
<details>
<summary>If Var(X) = 0, then X must be a constant.</summary>
✅ True! Zero variance means there is no spread around the mean, so X can only take one value.
</details>
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Key Takeaways
Variance gives us a way to measure how spread out a random variable is around its mean. It's like the "uncertainty" in our expectation - a high variance means individual outcomes can differ widely from what we expect on average.
Standard deviation brings this measure back to the original units, making it easier to interpret. For grades, a standard deviation of 10 points means typical grades fall within about 10 points of the average.
Variance pops up everywhere - from weather forecasts (how reliable is the predicted temperature?) to financial investments (how risky is this stock?) to quality control (how consistent is our manufacturing process?).
In our next notebook, we'll explore more properties of random variables and see how they combine to form more complex distributions.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Appendix (containing helper code):""")
return
@app.cell(hide_code=True)
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _():
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
from wigglystuff import TangleSlider
return TangleSlider, np, plt, stats
@app.cell(hide_code=True)
def _(TangleSlider, mo):
# Create interactive elements using TangleSlider for a more inline experience
true_grade = mo.ui.anywidget(TangleSlider(
amount=70,
min_value=50,
max_value=90,
step=5,
digits=0,
suffix=" points"
))
grader_a_spread = mo.ui.anywidget(TangleSlider(
amount=10,
min_value=5,
max_value=20,
step=1,
digits=0,
suffix=" points"
))
grader_b_spread = mo.ui.anywidget(TangleSlider(
amount=2,
min_value=1,
max_value=5,
step=0.5,
digits=1,
suffix=" points"
))
grader_c_mix = mo.ui.anywidget(TangleSlider(
amount=0.2,
min_value=0,
max_value=1,
step=0.05,
digits=2,
suffix=" proportion"
))
return grader_a_spread, grader_b_spread, grader_c_mix, true_grade
@app.cell(hide_code=True)
def _(grader_a_spread, grader_b_spread, grader_c_mix, mo, true_grade):
# Create a grid layout for the interactive controls
controls = mo.vstack([
mo.md("### Adjust Parameters to See How Variance Changes"),
mo.hstack([
mo.md("**True grade:** The correct score that should be assigned is "),
true_grade,
mo.md(" out of 100.")
], justify="start"),
mo.hstack([
mo.md("**Grader A:** Has a wide spread with standard deviation of "),
grader_a_spread,
mo.md(" points.")
], justify="start"),
mo.hstack([
mo.md("**Grader B:** Has a narrow spread with standard deviation of "),
grader_b_spread,
mo.md(" points.")
], justify="start"),
mo.hstack([
mo.md("**Grader C:** Has a mixture distribution with "),
grader_c_mix,
mo.md(" proportion of outliers.")
], justify="start"),
])
return (controls,)
if __name__ == "__main__":
app.run()
|