Spaces:
Running
Running
File size: 19,189 Bytes
5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 f433105 5890554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.4",
# "scipy==1.15.2",
# "altair==5.2.0",
# "wigglystuff==0.1.10",
# "pandas==2.2.3",
# ]
# ///
import marimo
__generated_with = "0.11.24"
app = marimo.App(width="medium", app_title="Binomial Distribution")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Binomial Distribution
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/binomial/), by Stanford professor Chris Piech._
In this section, we will discuss the binomial distribution. To start, imagine the following example:
Consider $n$ independent trials of an experiment where each trial is a "success" with probability $p$. Let $X$ be the number of successes in $n$ trials.
This situation is truly common in the natural world, and as such, there has been a lot of research into such phenomena. Random variables like $X$ are called **binomial random variables**. If you can identify that a process fits this description, you can inherit many already proved properties such as the PMF formula, expectation, and variance!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Binomial Random Variable Definition
$X \sim \text{Bin}(n, p)$ represents a binomial random variable where:
- $X$ is our random variable (number of successes)
- $\text{Bin}$ indicates it follows a binomial distribution
- $n$ is the number of trials
- $p$ is the probability of success in each trial
```
X ~ Bin(n, p)
↑ ↑ ↑
| | +-- Probability of
| | success on each
| | trial
| +-- Number of trials
|
Our random variable
is distributed
as a Binomial
```
Here are a few examples of binomial random variables:
- Number of heads in $n$ coin flips
- Number of 1's in randomly generated length $n$ bit string
- Number of disk drives crashed in 1000 computer cluster, assuming disks crash independently
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Properties of Binomial Distribution
| Property | Formula |
|----------|---------|
| Notation | $X \sim \text{Bin}(n, p)$ |
| Description | Number of "successes" in $n$ identical, independent experiments each with probability of success $p$ |
| Parameters | $n \in \{0, 1, \dots\}$, the number of experiments<br>$p \in [0, 1]$, the probability that a single experiment gives a "success" |
| Support | $x \in \{0, 1, \dots, n\}$ |
| PMF equation | $P(X=x) = {n \choose x}p^x(1-p)^{n-x}$ |
| Expectation | $E[X] = n \cdot p$ |
| Variance | $\text{Var}(X) = n \cdot p \cdot (1-p)$ |
Let's explore how the binomial distribution changes with different parameters.
"""
)
return
@app.cell(hide_code=True)
def _(TangleSlider, mo):
# Interactive elements using TangleSlider
n_slider = mo.ui.anywidget(TangleSlider(
amount=10,
min_value=1,
max_value=30,
step=1,
digits=0,
suffix=" trials"
))
p_slider = mo.ui.anywidget(TangleSlider(
amount=0.5,
min_value=0.01,
max_value=0.99,
step=0.01,
digits=2,
suffix=" probability"
))
# Grid layout for the interactive controls
controls = mo.vstack([
mo.md("### Adjust Parameters to See How Binomial Distribution Changes"),
mo.hstack([
mo.md("**Number of trials (n):** "),
n_slider
], justify="start"),
mo.hstack([
mo.md("**Probability of success (p):** "),
p_slider
], justify="start"),
])
return controls, n_slider, p_slider
@app.cell(hide_code=True)
def _(controls):
controls
return
@app.cell(hide_code=True)
def _(n_slider, np, p_slider, plt, stats):
# Parameters from sliders
_n = int(n_slider.amount)
_p = p_slider.amount
# Calculate PMF
_x = np.arange(0, _n + 1)
_pmf = stats.binom.pmf(_x, _n, _p)
# Relevant stats
_mean = _n * _p
_variance = _n * _p * (1 - _p)
_std_dev = np.sqrt(_variance)
_fig, _ax = plt.subplots(figsize=(10, 6))
# Plot PMF as bars
_ax.bar(_x, _pmf, color='royalblue', alpha=0.7, label=f'PMF: P(X=k)')
# Add a line
_ax.plot(_x, _pmf, 'ro-', alpha=0.6, label='PMF line')
# Add vertical lines
_ax.axvline(x=_mean, color='green', linestyle='--', linewidth=2,
label=f'Mean: {_mean:.2f}')
# Shade the stdev region
_ax.axvspan(_mean - _std_dev, _mean + _std_dev, alpha=0.2, color='green',
label=f'±1 Std Dev: {_std_dev:.2f}')
# Add labels and title
_ax.set_xlabel('Number of Successes (k)')
_ax.set_ylabel('Probability: P(X=k)')
_ax.set_title(f'Binomial Distribution with n={_n}, p={_p:.2f}')
# Annotations
_ax.annotate(f'E[X] = {_mean:.2f}',
xy=(_mean, stats.binom.pmf(int(_mean), _n, _p)),
xytext=(_mean + 1, max(_pmf) * 0.8),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
_ax.annotate(f'Var(X) = {_variance:.2f}',
xy=(_mean, stats.binom.pmf(int(_mean), _n, _p) / 2),
xytext=(_mean + 1, max(_pmf) * 0.6),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
# Grid and legend
_ax.grid(alpha=0.3)
_ax.legend()
plt.tight_layout()
plt.gca()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Relationship to Bernoulli Random Variables
One way to think of the binomial is as the sum of $n$ Bernoulli variables. Say that $Y_i$ is an indicator Bernoulli random variable which is 1 if experiment $i$ is a success. Then if $X$ is the total number of successes in $n$ experiments, $X \sim \text{Bin}(n, p)$:
$$X = \sum_{i=1}^n Y_i$$
Recall that the outcome of $Y_i$ will be 1 or 0, so one way to think of $X$ is as the sum of those 1s and 0s.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Binomial Probability Mass Function (PMF)
The most important property to know about a binomial is its [Probability Mass Function](https://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/10_probability_mass_function.py):
$$P(X=k) = {n \choose k}p^k(1-p)^{n-k}$$
```
P(X = k) = (n) p^k(1-p)^(n-k)
↑ (k)
| ↑
| +-- Binomial coefficient:
| number of ways to choose
| k successes from n trials
|
Probability that our
variable takes on the
value k
```
Recall, we derived this formula in Part 1. There is a complete example on the probability of $k$ heads in $n$ coin flips, where each flip is heads with probability $p$.
To briefly review, if you think of each experiment as being distinct, then there are ${n \choose k}$ ways of permuting $k$ successes from $n$ experiments. For any of the mutually exclusive permutations, the probability of that permutation is $p^k \cdot (1-p)^{n-k}$.
The name binomial comes from the term ${n \choose k}$ which is formally called the binomial coefficient.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Expectation of Binomial
There is an easy way to calculate the expectation of a binomial and a hard way. The easy way is to leverage the fact that a binomial is the sum of Bernoulli indicator random variables $X = \sum_{i=1}^{n} Y_i$ where $Y_i$ is an indicator of whether the $i$-th experiment was a success: $Y_i \sim \text{Bernoulli}(p)$.
Since the [expectation of the sum](http://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/11_expectation.py) of random variables is the sum of expectations, we can add the expectation, $E[Y_i] = p$, of each of the Bernoulli's:
\begin{align}
E[X] &= E\Big[\sum_{i=1}^{n} Y_i\Big] && \text{Since }X = \sum_{i=1}^{n} Y_i \\
&= \sum_{i=1}^{n}E[ Y_i] && \text{Expectation of sum} \\
&= \sum_{i=1}^{n}p && \text{Expectation of Bernoulli} \\
&= n \cdot p && \text{Sum $n$ times}
\end{align}
The hard way is to use the definition of expectation:
\begin{align}
E[X] &= \sum_{i=0}^n i \cdot P(X = i) && \text{Def of expectation} \\
&= \sum_{i=0}^n i \cdot {n \choose i} p^i(1-p)^{n-i} && \text{Sub in PMF} \\
& \cdots && \text{Many steps later} \\
&= n \cdot p
\end{align}
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Binomial Distribution in Python
As you might expect, you can use binomial distributions in code. The standardized library for binomials is `scipy.stats.binom`.
One of the most helpful methods that this package provides is a way to calculate the PMF. For example, say $n=5$, $p=0.6$ and you want to find $P(X=2)$, you could use the following code:
"""
)
return
@app.cell
def _(stats):
# define variables for x, n, and p
_n = 5 # Integer value for n
_p = 0.6
_x = 2
# use scipy to compute the pmf
p_x = stats.binom.pmf(_x, _n, _p)
# use the probability for future work
print(f'P(X = {_x}) = {p_x:.4f}')
return (p_x,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Another particularly helpful function is the ability to generate a random sample from a binomial. For example, say $X$ represents the number of requests to a website. We can draw 100 samples from this distribution using the following code:""")
return
@app.cell
def _(n, p, stats):
n_int = int(n)
# samples from the binomial distribution
samples = stats.binom.rvs(n_int, p, size=100)
# Print the samples
print(samples)
return n_int, samples
@app.cell(hide_code=True)
def _(n_int, np, p, plt, samples, stats):
# Plot histogram of samples
plt.figure(figsize=(10, 5))
plt.hist(samples, bins=np.arange(-0.5, n_int+1.5, 1), alpha=0.7, color='royalblue',
edgecolor='black', density=True)
# Overlay the PMF
x_values = np.arange(0, n_int+1)
pmf_values = stats.binom.pmf(x_values, n_int, p)
plt.plot(x_values, pmf_values, 'ro-', ms=8, label='Theoretical PMF')
# Add labels and title
plt.xlabel('Number of Successes')
plt.ylabel('Relative Frequency / Probability')
plt.title(f'Histogram of 100 Samples from Bin({n_int}, {p})')
plt.legend()
plt.grid(alpha=0.3)
# Annotate
plt.annotate('Sample mean: %.2f' % np.mean(samples),
xy=(0.7, 0.9), xycoords='axes fraction',
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.3))
plt.annotate('Theoretical mean: %.2f' % (n_int*p),
xy=(0.7, 0.8), xycoords='axes fraction',
bbox=dict(boxstyle='round,pad=0.5', fc='lightgreen', alpha=0.3))
plt.tight_layout()
plt.gca()
return pmf_values, x_values
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
You might be wondering what a random sample is! A random sample is a randomly chosen assignment for our random variable. Above we have 100 such assignments. The probability that value $k$ is chosen is given by the PMF: $P(X=k)$.
There are also functions for getting the mean, the variance, and more. You can read the [scipy.stats.binom documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html), especially the list of methods.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Interactive Exploration of Binomial vs. Negative Binomial
The standard binomial distribution is a special case of a broader family of distributions. One related distribution is the negative binomial, which can model count data with overdispersion (where the variance is larger than the mean).
Below, you can explore how the negative binomial distribution compares to a Poisson distribution (which can be seen as a limiting case of the binomial as $n$ gets large and $p$ gets small, with $np$ held constant).
Adjust the sliders to see how the parameters affect the distribution:
*Note: The interactive visualization in this section was inspired by work from [liquidcarbon on GitHub](https://github.com/liquidcarbon).*
"""
)
return
@app.cell(hide_code=True)
def _(alpha_slider, chart, equation, mo, mu_slider):
mo.vstack(
[
mo.md(f"## Negative Binomial Distribution (Poisson + Overdispersion)\n{equation}"),
mo.hstack([mu_slider, alpha_slider], justify="start"),
chart,
], justify='space-around'
).center()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Pick which of these statements about binomial distributions you think are correct:
/// details | The variance of a binomial distribution is always equal to its mean
❌ Incorrect! The variance is $np(1-p)$ while the mean is $np$. They're only equal when $p=1$ (which is a degenerate case).
///
/// details | If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(n, 1-p)$, then $X$ and $Y$ have the same variance
✅ Correct! $\text{Var}(X) = np(1-p)$ and $\text{Var}(Y) = n(1-p)p$, which are the same.
///
/// details | As the number of trials increases, the binomial distribution approaches a normal distribution
✅ Correct! For large $n$, the binomial distribution can be approximated by a normal distribution with the same mean and variance.
///
/// details | The PMF of a binomial distribution is symmetric when $p = 0.5$
✅ Correct! When $p = 0.5$, the PMF is symmetric around $n/2$.
///
/// details | The sum of two independent binomial random variables with the same $p$ is also a binomial random variable
✅ Correct! If $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$ are independent, then $X + Y \sim \text{Bin}(n_1 + n_2, p)$.
///
/// details | The maximum value of the PMF for $\text{Bin}(n,p)$ always occurs at $k = np$
❌ Incorrect! The mode (maximum value of PMF) is either $\lfloor (n+1)p \rfloor$ or $\lceil (n+1)p-1 \rceil$ depending on whether $(n+1)p$ is an integer.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
So we've explored the binomial distribution, and honestly, it's one of the most practical probability distributions you'll encounter. Think about it — anytime you're counting successes in a fixed number of trials (like those coin flips we discussed), this is your go-to distribution.
I find it fascinating how the expectation is simply $np$. Such a clean, intuitive formula! And remember that neat visualization we saw earlier? When we adjusted the parameters, you could actually see how the distribution shape changes—becoming more symmetric as $n$ increases.
The key things to take away:
- The binomial distribution models the number of successes in $n$ independent trials, each with probability $p$ of success
- Its PMF is given by the formula $P(X=k) = {n \choose k}p^k(1-p)^{n-k}$, which lets us calculate exactly how likely any specific number of successes is
- The expected value is $E[X] = np$ and the variance is $Var(X) = np(1-p)$
- It's related to other distributions: it's essentially a sum of Bernoulli random variables, and connects to both the negative binomial and Poisson distributions
- In Python, the `scipy.stats.binom` module makes working with binomial distributions straightforward—you can generate random samples and calculate probabilities with just a few lines of code
You'll see the binomial distribution pop up everywhere—from computer science to quality control, epidemiology, and data science. Any time you have scenarios with binary outcomes over multiple trials, this distribution has you covered.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Appendix code (helper functions, variables, etc.):""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _():
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import pandas as pd
import altair as alt
from wigglystuff import TangleSlider
return TangleSlider, alt, np, pd, plt, stats
@app.cell(hide_code=True)
def _(mo):
alpha_slider = mo.ui.slider(
value=0.1,
steps=[0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1],
label="α (overdispersion)",
show_value=True,
)
mu_slider = mo.ui.slider(
value=100, start=1, stop=100, step=1, label="μ (mean)", show_value=True
)
return alpha_slider, mu_slider
@app.cell(hide_code=True)
def _():
equation = """
$$
P(X = k) = \\frac{\\Gamma(k + \\frac{1}{\\alpha})}{\\Gamma(k + 1) \\Gamma(\\frac{1}{\\alpha})} \\left( \\frac{1}{\\mu \\alpha + 1} \\right)^{\\frac{1}{\\alpha}} \\left( \\frac{\\mu \\alpha}{\\mu \\alpha + 1} \\right)^k
$$
$$
\\sigma^2 = \\mu + \\alpha \\mu^2
$$
"""
return (equation,)
@app.cell(hide_code=True)
def _(alpha_slider, alt, mu_slider, np, pd, stats):
mu = mu_slider.value
alpha = alpha_slider.value
n = 1000 - mu if alpha == 0 else 1 / alpha
p = n / (mu + n)
x = np.arange(0, mu * 3 + 1, 1)
df = pd.DataFrame(
{
"x": x,
"y": stats.nbinom.pmf(x, n, p),
"y_poi": stats.nbinom.pmf(x, 1000 - mu, 1 - mu / 1000),
}
)
r1k = stats.nbinom.rvs(n, p, size=1000)
df["in 95% CI"] = df["x"].between(*np.percentile(r1k, q=[2.5, 97.5]))
base = alt.Chart(df)
chart_poi = base.mark_bar(
fillOpacity=0.25, width=100 / mu, fill="magenta"
).encode(
x=alt.X("x").scale(domain=(-0.4, x.max() + 0.4), nice=False),
y=alt.Y("y_poi").scale(domain=(0, df.y_poi.max() * 1.1)).title(None),
)
chart_nb = base.mark_bar(fillOpacity=0.75, width=100 / mu).encode(
x="x",
y="y",
fill=alt.Fill("in 95% CI")
.scale(domain=[False, True], range=["#aaa", "#7c7"])
.legend(orient="bottom-right"),
)
chart = (chart_poi + chart_nb).configure_view(continuousWidth=450)
return alpha, base, chart, chart_nb, chart_poi, df, mu, n, p, r1k, x
if __name__ == "__main__":
app.run()
|