Spaces:
Running
Running
File size: 35,548 Bytes
de962bf 9747691 de962bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "marimo",
# "altair==5.5.0",
# "matplotlib==3.10.1",
# "numpy==2.2.4",
# "scipy==1.15.2",
# "sympy==1.13.3",
# "wigglystuff==0.1.10",
# "polars==1.26.0",
# ]
# ///
import marimo
__generated_with = "0.11.26"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Continuous Distributions
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/continuous/), by Stanford professor Chris Piech._
So far, all the random variables we've explored have been discrete, taking on only specific values (usually integers). Now we'll move into the world of **continuous random variables**, which can take on any real number value. Continuous random variables are used to model measurements with arbitrary precision like height, weight, time, and many natural phenomena.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## From Discrete to Continuous
To make the transition from discrete to continuous random variables, let's start with a thought experiment:
> Imagine you're running to catch a bus. You know you'll arrive at 2:15pm, but you don't know exactly when the bus will arrive. You want to model the bus arrival time (in minutes past 2pm) as a random variable $T$ so you can calculate the probability that you'll wait more than five minutes: $P(15 < T < 20)$.
This immediately highlights a key difference from discrete distributions. For discrete distributions, we described the probability that a random variable takes on exact values. But this doesn't make sense for continuous values like time.
For example:
- What's the probability the bus arrives at exactly 2:17pm and 12.12333911102389234 seconds?
- What's the probability of a child being born weighing exactly 3.523112342234 kilograms?
These questions don't have meaningful answers because real-world measurements can have infinite precision. The probability of a continuous random variable taking on any specific exact value is actually zero!
### Visualizing the Transition
Let's visualize this transition from discrete to continuous:
"""
)
return
@app.cell(hide_code=True)
def _(fig_to_image, mo, np, plt):
def create_discretization_plot():
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
# values from 0 to 30 minutes
x = np.linspace(0, 30, 1000)
# Triangular distribution peaked at 15 minutes)
y = np.where(x <= 15, x/15, (30-x)/15)
y = y / np.trapezoid(y, x) # Normalize
# 5-minute chunks (first plot)
bins = np.arange(0, 31, 5)
hist, _ = np.histogram(x, bins=bins, weights=y)
width = bins[1] - bins[0]
axs[0].bar(bins[:-1], hist * width, width=width, alpha=0.7,
color='royalblue', edgecolor='black')
axs[0].set_xlim(0, 30)
axs[0].set_title('5-Minute Intervals')
axs[0].set_xlabel('Minutes past 2pm')
axs[0].set_ylabel('Probability')
# 15-20 minute range more prominent
axs[0].bar([15], hist[3] * width, width=width, alpha=0.7,
color='darkorange', edgecolor='black')
# 2.5-minute chunks (second plot)
bins = np.arange(0, 31, 2.5)
hist, _ = np.histogram(x, bins=bins, weights=y)
width = bins[1] - bins[0]
axs[1].bar(bins[:-1], hist * width, width=width, alpha=0.7,
color='royalblue', edgecolor='black')
axs[1].set_xlim(0, 30)
axs[1].set_title('2.5-Minute Intervals')
axs[1].set_xlabel('Minutes past 2pm')
# Make 15-20 minute range more prominent
highlight_indices = [6, 7]
for idx in highlight_indices:
axs[1].bar([bins[idx]], hist[idx] * width, width=width, alpha=0.7,
color='darkorange', edgecolor='black')
# Continuous distribution (third plot)
axs[2].plot(x, y, 'royalblue', linewidth=2)
axs[2].set_xlim(0, 30)
axs[2].set_title('Continuous Distribution')
axs[2].set_xlabel('Minutes past 2pm')
axs[2].set_ylabel('Probability Density')
# Highlight the AUC between 15 and 20
mask = (x >= 15) & (x <= 20)
axs[2].fill_between(x[mask], y[mask], color='darkorange', alpha=0.7)
# Mark 15-20 minute interval
for ax in axs:
ax.axvline(x=15, color='red', linestyle='--', alpha=0.5)
ax.axvline(x=20, color='red', linestyle='--', alpha=0.5)
ax.set_xticks([0, 5, 10, 15, 20, 25, 30])
ax.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return fig
# Plot creation & conversion
_fig = create_discretization_plot()
_img = mo.image(fig_to_image(_fig), width="100%")
_explanation = mo.md(
r"""
The figure above illustrates our transition from discrete to continuous thinking:
- **Left**: Time divided into 5-minute chunks, where the probability of the bus arriving between 15-20 minutes (highlighted in orange) is a single value.
- **Center**: Time divided into finer 2.5-minute chunks, where the 15-20 minute range consists of two chunks.
- **Right**: In the limit, we get a continuous probability density function where the probability is the area under the curve between 15 and 20 minutes.
As we make our chunks smaller and smaller, we eventually arrive at a smooth function that gives us the probability density at each point.
"""
)
mo.vstack([_img, _explanation])
return (create_discretization_plot,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Probability Density Functions
In the world of discrete random variables, we used **Probability Mass Functions (PMFs)** to describe the probability of a random variable taking on specific values. In the continuous world, we need a different approach.
For continuous random variables, we use a **Probability Density Function (PDF)** which defines the relative likelihood that a random variable takes on a particular value. We traditionally denote the PDF with the symbol $f$ and write it as:
$$f(X=x) \quad \text{or simply} \quad f(x)$$
Where the lowercase $x$ implies that we're talking about the relative likelihood of a continuous random variable which is the uppercase $X$.
### Key Properties of PDFs
A **Probability Density Function (PDF)** $f(x)$ for a continuous random variable $X$ has these key properties:
1. The probability that $X$ takes a value in the interval $[a, b]$ is:
$$P(a \leq X \leq b) = \int_a^b f(x) \, dx$$
2. The PDF must be non-negative everywhere:
$$f(x) \geq 0 \text{ for all } x$$
3. The total probability must sum to 1:
$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$
4. The probability that $X$ takes any specific exact value is 0:
$$P(X = a) = \int_a^a f(x) \, dx = 0$$
This last property highlights a key difference from discrete distributions: the probability of a continuous random variable taking on an exact value is always 0. Probabilities only make sense when talking about ranges of values.
### Caution: Density ≠ Probability
A common misconception is to think of $f(x)$ as a probability. It is instead a **probability density**, representing probability per unit of $x$. The values of $f(x)$ can actually exceed 1, as long as the total area under the curve equals 1.
The interpretation of $f(x)$ is only meaningful when:
1. We integrate over a range to get a probability, or
2. We compare densities at different points to determine relative likelihoods.
"""
)
return
@app.cell(hide_code=True)
def _(TangleSlider, mo):
# Create sliders for a and b
a_slider = mo.ui.anywidget(TangleSlider(
amount=1,
min_value=0,
max_value=5,
step=0.1,
digits=1
))
b_slider = mo.ui.anywidget(TangleSlider(
amount=3,
min_value=0,
max_value=5,
step=0.1,
digits=1
))
# Distribution selector
distribution_radio = mo.ui.radio(
options=["uniform", "triangular", "exponential"],
value="uniform",
label="Distribution Type"
)
# Controls layout
_controls = mo.vstack([
mo.md("### Visualizing Probability as Area Under the PDF Curve"),
mo.md("Adjust sliders to change the interval $[a, b]$ and see how the probability changes:"),
mo.hstack([
mo.md("Lower bound (a):"),
a_slider,
mo.md("Upper bound (b):"),
b_slider
], justify="start"),
distribution_radio
])
_controls
return a_slider, b_slider, distribution_radio
@app.cell(hide_code=True)
def _(
a_slider,
b_slider,
create_pdf_visualization,
distribution_radio,
fig_to_image,
mo,
):
a = a_slider.amount
b = b_slider.amount
distribution = distribution_radio.value
# Ensure a < b
if a > b:
a, b = b, a
# visualization
_fig, _probability = create_pdf_visualization(a, b, distribution)
# Display visualization
_img = mo.image(fig_to_image(_fig), width="100%")
# Add appropriate explanation
if distribution == "uniform":
_explanation = mo.md(
f"""
In the **uniform distribution**, all values between 0 and 5 are equally likely.
The probability density is constant at 0.2 (which is 1/5, ensuring the total area is 1).
For a uniform distribution, the probability that $X$ is in the interval $[{a:.1f}, {b:.1f}]$
is simply proportional to the width of the interval: $P({a:.1f} \leq X \leq {b:.1f}) = {_probability:.4f}$
Note that while the PDF has a constant value of 0.2, this is not a probability but a density!
"""
)
elif distribution == "triangular":
_explanation = mo.md(
f"""
In this **triangular distribution**, the probability density increases linearly from 0 to 2.5,
then decreases linearly from 2.5 to 5.
The distribution's peak is at x = 2.5, where the value is highest.
The orange shaded area representing $P({a:.1f} \leq X \leq {b:.1f}) = {_probability:.4f}$
is calculated by integrating the PDF over the interval.
"""
)
else:
_explanation = mo.md(
f"""
The **exponential distribution** (with λ = 0.5) models the time between events in a Poisson process.
Unlike the uniform and triangular distributions, the exponential distribution has infinite support
(extends from 0 to infinity). The probability density decreases exponentially as x increases.
The orange shaded area representing $P({a:.1f} \leq X \leq {b:.1f}) = {_probability:.4f}$
is calculated by integrating $f(x) = 0.5e^{{-0.5x}}$ over the interval.
"""
)
mo.vstack([_img, _explanation])
return a, b, distribution
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Cumulative Distribution Function
Since working with PDFs requires solving integrals to find probabilities, we often use the **Cumulative Distribution Function (CDF)** as a more convenient tool.
The CDF $F(x)$ for a continuous random variable $X$ is defined as:
$$F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)\,dt$$
where $f(t)$ is the PDF of $X$.
### Properties of CDFs
A CDF $F(x)$ has these key properties:
1. $F(x)$ is always non-decreasing: if $a < b$, then $F(a) \leq F(b)$
2. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$
3. $F(x)$ is right-continuous: $\lim_{h \to 0^+} F(x+h) = F(x)$
### Using the CDF to Calculate Probabilities
The CDF is extremely useful because it allows us to calculate various probabilities without having to perform integrals each time:
| Probability Query | Solution | Explanation |
|-------------------|----------|-------------|
| $P(X < a)$ | $F(a)$ | Definition of the CDF |
| $P(X \leq a)$ | $F(a)$ | For continuous distributions, $P(X = a) = 0$ |
| $P(X > a)$ | $1 - F(a)$ | Since $P(X \leq a) + P(X > a) = 1$ |
| $P(a < X < b)$ | $F(b) - F(a)$ | Since $F(a) + P(a < X < b) = F(b)$ |
| $P(a \leq X \leq b)$ | $F(b) - F(a)$ | Since $P(X = a) = P(X = b) = 0$ |
For discrete random variables, the CDF is also defined but it's less commonly used:
$$F_X(a) = \sum_{i \leq a} P(X = i)$$
The CDF for discrete distributions is a step function, increasing at each point in the support of the random variable.
"""
)
return
@app.cell(hide_code=True)
def _(fig_to_image, mo, np, plt):
def create_pdf_cdf_comparison():
fig, axs = plt.subplots(3, 2, figsize=(12, 10))
# x-values
x = np.linspace(-1, 6, 1000)
# 1. Uniform Distribution
# PDF
pdf_uniform = np.where((x >= 0) & (x <= 5), 0.2, 0)
axs[0, 0].plot(x, pdf_uniform, 'b-', linewidth=2)
axs[0, 0].set_title('Uniform PDF')
axs[0, 0].set_ylabel('Density')
axs[0, 0].grid(alpha=0.3)
# CDF
cdf_uniform = np.zeros_like(x)
for i, val in enumerate(x):
if val < 0:
cdf_uniform[i] = 0
elif val > 5:
cdf_uniform[i] = 1
else:
cdf_uniform[i] = val / 5
axs[0, 1].plot(x, cdf_uniform, 'r-', linewidth=2)
axs[0, 1].set_title('Uniform CDF')
axs[0, 1].set_ylabel('Probability')
axs[0, 1].grid(alpha=0.3)
# 2. Triangular Distribution
# PDF
pdf_triangular = np.where(x <= 2.5, x/6.25, (5-x)/6.25)
pdf_triangular = np.where((x < 0) | (x > 5), 0, pdf_triangular)
axs[1, 0].plot(x, pdf_triangular, 'b-', linewidth=2)
axs[1, 0].set_title('Triangular PDF')
axs[1, 0].set_ylabel('Density')
axs[1, 0].grid(alpha=0.3)
# CDF
cdf_triangular = np.zeros_like(x)
for i, val in enumerate(x):
if val <= 0:
cdf_triangular[i] = 0
elif val >= 5:
cdf_triangular[i] = 1
else:
# For x ≤ 2.5: CDF = x²/(2 *6 .25)
# For x > 2.5: CDF = 1 - (5 - x)²/(2 * 6.25)
if val <= 2.5:
cdf_triangular[i] = (val**2) / (2 * 6.25)
else:
cdf_triangular[i] = 1 - ((5 - val)**2) / (2 * 6.25)
axs[1, 1].plot(x, cdf_triangular, 'r-', linewidth=2)
axs[1, 1].set_title('Triangular CDF')
axs[1, 1].set_ylabel('Probability')
axs[1, 1].grid(alpha=0.3)
# 3. Exponential Distribution
# PDF
lambda_param = 0.5
pdf_exponential = np.where(x >= 0, lambda_param * np.exp(-lambda_param * x), 0)
axs[2, 0].plot(x, pdf_exponential, 'b-', linewidth=2)
axs[2, 0].set_title('Exponential PDF (λ=0.5)')
axs[2, 0].set_xlabel('x')
axs[2, 0].set_ylabel('Density')
axs[2, 0].grid(alpha=0.3)
# CDF
cdf_exponential = np.where(x < 0, 0, 1 - np.exp(-lambda_param * x))
axs[2, 1].plot(x, cdf_exponential, 'r-', linewidth=2)
axs[2, 1].set_title('Exponential CDF (λ=0.5)')
axs[2, 1].set_xlabel('x')
axs[2, 1].set_ylabel('Probability')
axs[2, 1].grid(alpha=0.3)
# Common x-limits
for ax in axs.flatten():
ax.set_xlim(-0.5, 5.5)
if ax in axs[:, 0]: # PDF plots
ax.set_ylim(-0.05, max(0.5, max(pdf_triangular)*1.1))
else: # CDF plots
ax.set_ylim(-0.05, 1.05)
plt.tight_layout()
plt.gca()
return fig
# Create visualization
_fig = create_pdf_cdf_comparison()
_img = mo.image(fig_to_image(_fig), width="100%")
_explanation = mo.md(
r"""
The figure above compares the Probability Density Functions (PDFs) on the left with their corresponding Cumulative Distribution Functions (CDFs) on the right for three common distributions:
1. **Uniform Distribution**:
- PDF: Constant value (0.2) across the support range [0, 5]
- CDF: Linear increase from 0 to 1 across the support range
2. **Triangular Distribution**:
- PDF: Linearly increases then decreases, forming a triangle shape
- CDF: Increases quadratically up to the peak, then approaches 1 quadratically
3. **Exponential Distribution**:
- PDF: Starts at λ=0.5 and decreases exponentially
- CDF: Starts at 0 and approaches 1 exponentially (never quite reaching 1)
/// NOTE
The common properties of all CDFs:
- They are non-decreasing functions
- They start at 0 (for x = -∞) and approach or reach 1 (for x = ∞)
- The slope of the CDF at any point equals the PDF value at that point
"""
)
mo.vstack([_img, _explanation])
return (create_pdf_cdf_comparison,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Solving for Constants in PDFs
Many PDFs contain a constant that needs to be determined to ensure the total probability equals 1. Let's work through an example to understand how to solve for these constants.
### Example: Finding the Constant $C$
Let $X$ be a continuous random variable with PDF:
$$f(x) = \begin{cases}
C(4x - 2x^2) & \text{when } 0 < x < 2 \\
0 & \text{otherwise}
\end{cases}$$
In this function, $C$ is a constant we need to determine. Since we know the PDF must integrate to 1:
\begin{align}
&\int_0^2 C(4x - 2x^2) \, dx = 1 \\
&C\left(2x^2 - \frac{2x^3}{3}\right)\bigg|_0^2 = 1 \\
&C\left[\left(8 - \frac{16}{3}\right) - 0 \right] = 1 \\
&C\left(\frac{24 - 16}{3}\right) = 1 \\
&C\left(\frac{8}{3}\right) = 1 \\
&C = \frac{3}{8}
\end{align}
Now that we know $C = \frac{3}{8}$, we can compute probabilities. For example, what is $P(X > 1)$?
\begin{align}
P(X > 1)
&= \int_1^{\infty}f(x) \, dx \\
&= \int_1^2 \frac{3}{8}(4x - 2x^2) \, dx \\
&= \frac{3}{8}\left(2x^2 - \frac{2x^3}{3}\right)\bigg|_1^2 \\
&= \frac{3}{8}\left[\left(8 - \frac{16}{3}\right) - \left(2 - \frac{2}{3}\right)\right] \\
&= \frac{3}{8}\left[\left(8 - \frac{16}{3}\right) - \left(\frac{6 - 2}{3}\right)\right] \\
&= \frac{3}{8}\left[\left(\frac{24 - 16}{3}\right) - \left(\frac{4}{3}\right)\right] \\
&= \frac{3}{8}\left[\left(\frac{8}{3}\right) - \left(\frac{4}{3}\right)\right] \\
&= \frac{3}{8} \cdot \frac{4}{3} \\
&= \frac{1}{2}
\end{align}
Let's visualize this distribution and verify our results:
"""
)
return
@app.cell(hide_code=True)
def _(
create_example_pdf_visualization,
fig_to_image,
mo,
symbolic_calculation,
):
# Create visualization
_fig = create_example_pdf_visualization()
_img = mo.image(fig_to_image(_fig), width="100%")
# Symbolic calculation
_sympy_verification = mo.md(symbolic_calculation())
_explanation = mo.md(
r"""
The figure above shows:
1. **Left**: The PDF $f(x) = \frac{3}{8}(4x - 2x^2)$ for $0 < x < 2$, with the area representing P(X > 1) shaded in orange.
2. **Right**: The corresponding CDF, showing F(1) = 0.5 and thus P(X > 1) = 1 - F(1) = 0.5.
Notice how we:
1. First determined the constant C = 3/8 by ensuring the total area under the PDF equals 1
2. Used this value to calculate specific probabilities like P(X > 1)
3. Verified our results both graphically and symbolically
"""
)
mo.vstack([_img, _sympy_verification, _explanation])
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Expectation and Variance of Continuous Random Variables
Just as with discrete random variables, we can calculate the expectation and variance of continuous random variables. The main difference is that we use integrals instead of sums.
### Expectation (Mean)
For a continuous random variable $X$ with PDF $f(x)$, the expectation is:
$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$
More generally, for any function $g(X)$:
$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \, dx$$
### Variance
The variance is defined the same way as for discrete random variables:
$$\text{Var}(X) = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$
where $\mu = E[X]$ is the mean of $X$.
To calculate $E[X^2]$, we use:
$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) \, dx$$
### Properties
The following properties hold for both continuous and discrete random variables:
1. $E[aX + b] = aE[X] + b$ for constants $a$ and $b$
2. $\text{Var}(aX + b) = a^2 \text{Var}(X)$ for constants $a$ and $b$
Let's calculate the expectation and variance for our example PDF:
"""
)
return
@app.cell(hide_code=True)
def _(fig_to_image, mo, np, plt, sympy):
# Symbolic calculation of expectation and variance
def symbolic_stats_calc():
x = sympy.symbols('x')
C = sympy.Rational(3, 8)
# Define the PDF
pdf_expr = C * (4*x - 2*x**2)
# Calculate expectation
E_X = sympy.integrate(x * pdf_expr, (x, 0, 2))
# Calculate E[X²]
E_X2 = sympy.integrate(x**2 * pdf_expr, (x, 0, 2))
# Calculate variance
Var_X = E_X2 - E_X**2
# Calculate standard deviation
Std_X = sympy.sqrt(Var_X)
return E_X, E_X2, Var_X, Std_X
# Get symbolic results
E_X, E_X2, Var_X, Std_X = symbolic_stats_calc()
# Numerical values for plotting
E_X_val = float(E_X)
Var_X_val = float(Var_X)
Std_X_val = float(Std_X)
def create_expectation_variance_vis():
"""Create visualization showing mean and variance for the example PDF."""
fig, ax = plt.subplots(figsize=(10, 6))
# x-values
x = np.linspace(-0.5, 2.5, 1000)
# PDF function
C = 3/8
pdf = np.where((x > 0) & (x < 2), C * (4*x - 2*x**2), 0)
# Plot the PDF
ax.plot(x, pdf, 'b-', linewidth=2, label='PDF')
ax.fill_between(x, pdf, where=(x > 0) & (x < 2), alpha=0.3, color='blue')
# Mark the mean
ax.axvline(x=E_X_val, color='r', linestyle='--', linewidth=2,
label=f'Mean (E[X] = {E_X_val:.3f})')
# Mark the standard deviation range
ax.axvspan(E_X_val - Std_X_val, E_X_val + Std_X_val, alpha=0.2, color='green',
label=f'±1 Std Dev ({Std_X_val:.3f})')
# Add labels and title
ax.set_xlabel('x')
ax.set_ylabel('Probability Density')
ax.set_title('PDF with Mean and Variance')
ax.legend()
ax.grid(alpha=0.3)
# Set x-limits
ax.set_xlim(-0.25, 2.25)
plt.tight_layout()
return fig
# Create the visualization
_fig = create_expectation_variance_vis()
_img = mo.image(fig_to_image(_fig), width="100%")
# Detailed calculations for our example
_calculations = mo.md(
f"""
### Calculating Expectation and Variance for Our Example
Let's calculate the expectation and variance for the PDF:
$$f(x) = \\begin{{cases}}
\\frac{{3}}{{8}}(4x - 2x^2) & \\text{{when }} 0 < x < 2 \\\\
0 & \\text{{otherwise}}
\\end{{cases}}$$
#### Expectation Calculation
$$E[X] = \\int_{{-\\infty}}^{{\\infty}} x \\cdot f(x) \\, dx = \\int_0^2 x \\cdot \\frac{{3}}{{8}}(4x - 2x^2) \\, dx$$
$$E[X] = \\frac{{3}}{{8}} \\int_0^2 (4x^2 - 2x^3) \\, dx = \\frac{{3}}{{8}} \\left[ \\frac{{4x^3}}{{3}} - \\frac{{2x^4}}{{4}} \\right]_0^2$$
$$E[X] = \\frac{{3}}{{8}} \\left[ \\frac{{4 \\cdot 2^3}}{{3}} - \\frac{{2 \\cdot 2^4}}{{4}} - 0 \\right] = \\frac{{3}}{{8}} \\left[ \\frac{{32}}{{3}} - 4 \\right]$$
$$E[X] = \\frac{{3}}{{8}} \\cdot \\frac{{32 - 12}}{{3}} = \\frac{{3}}{{8}} \\cdot \\frac{{20}}{{3}} = \\frac{{20}}{{8}} = {E_X}$$
#### Variance Calculation
First, we need $E[X^2]$:
$$E[X^2] = \\int_{{-\\infty}}^{{\\infty}} x^2 \\cdot f(x) \\, dx = \\int_0^2 x^2 \\cdot \\frac{{3}}{{8}}(4x - 2x^2) \\, dx$$
$$E[X^2] = \\frac{{3}}{{8}} \\int_0^2 (4x^3 - 2x^4) \\, dx = \\frac{{3}}{{8}} \\left[ \\frac{{4x^4}}{{4}} - \\frac{{2x^5}}{{5}} \\right]_0^2$$
$$E[X^2] = \\frac{{3}}{{8}} \\left[ 4 - \\frac{{2 \\cdot 32}}{{5}} - 0 \\right] = \\frac{{3}}{{8}} \\left[ 4 - \\frac{{64}}{{5}} \\right]$$
$$E[X^2] = \\frac{{3}}{{8}} \\cdot \\frac{{20 - 64/5}}{{1}} = {E_X2}$$
Now we can calculate the variance:
$$\\text{{Var}}(X) = E[X^2] - (E[X])^2 = {E_X2} - ({E_X})^2 = {Var_X}$$
Therefore, the standard deviation is $\\sqrt{{\\text{{Var}}(X)}} = {Std_X}$.
"""
)
mo.vstack([_img, _calculations])
return (
E_X,
E_X2,
E_X_val,
Std_X,
Std_X_val,
Var_X,
Var_X_val,
create_expectation_variance_vis,
symbolic_stats_calc,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Select which of these statements about continuous distributions you think are correct:
/// details | The PDF of a continuous random variable can have values greater than 1
✅ Correct! Since the PDF represents density (not probability), it can exceed 1 as long as the total area under the curve equals 1.
///
/// details | For a continuous distribution, $P(X = a) > 0$ for any value $a$ in the support
❌ Incorrect! For continuous random variables, the probability of the random variable taking any specific exact value is always 0. That is, $P(X = a) = 0$ for any value $a$.
///
/// details | The area under a PDF curve between $a$ and $b$ equals the probability $P(a \leq X \leq b)$
✅ Correct! The area under the PDF curve over an interval gives the probability that the random variable falls within that interval.
///
/// details | The CDF function $F(x)$ is always equal to $\int_{-\infty}^{x} f(t) \, dt$
✅ Correct! The CDF at point $x$ is the integral of the PDF from negative infinity to $x$.
///
/// details | For a continuous random variable, $F(x)$ ranges from 0 to the maximum value in the support of the random variable
❌ Incorrect! The CDF $F(x)$ ranges from 0 to 1, representing probabilities. It approaches 1 (not the maximum value in the support) as $x$ approaches infinity.
///
/// details | To calculate the variance of a continuous random variable, we use the formula $\text{Var}(X) = E[X^2] - (E[X])^2$
✅ Correct! This formula applies to both discrete and continuous random variables.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
Moving from discrete to continuous thinking is a big conceptual leap, but it opens up powerful ways to model real-world phenomena.
In this notebook, we've seen how continuous random variables let us model quantities that can take any real value. Instead of dealing with probabilities at specific points (which are actually zero!), we work with probability density functions (PDFs) and find probabilities by calculating areas under curves.
Some key points to remember:
• PDFs give us relative likelihood, not actual probabilities - that's why they can exceed 1
• The probability between two points is the area under the PDF curve
• CDFs offer a convenient shortcut to find probabilities without integrating
• Expectation and variance work similarly to discrete variables, just with integrals instead of sums
• Constants in PDFs are determined by ensuring the total probability equals 1
This foundation will serve you well as we explore specific continuous distributions like normal, exponential, and beta in future notebooks. These distributions are the workhorses of probability theory and statistics, appearing everywhere from quality control to financial modeling.
One final thought: continuous distributions are beautiful mathematical objects, but remember they're just models. Real-world data is often discrete at some level, but continuous distributions provide elegant approximations that make calculations more tractable.
"""
)
return
@app.cell
def _(mo):
mo.md(r"""Appendix code (helper functions, variables, etc.):""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _():
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import sympy
from scipy import integrate as scipy
import polars as pl
import altair as alt
from wigglystuff import TangleSlider
return TangleSlider, alt, np, pl, plt, scipy, stats, sympy
@app.cell(hide_code=True)
def _():
import io
import base64
from matplotlib.figure import Figure
# Helper function to convert mpl figure to an image format mo.image can handle
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
data = f"data:image/png;base64,{base64.b64encode(buf.read()).decode('utf-8')}"
return data
return Figure, base64, fig_to_image, io
@app.cell(hide_code=True)
def _(np, plt):
def create_pdf_visualization(a, b, distribution='uniform'):
fig, ax = plt.subplots(figsize=(10, 6))
# x-values
x = np.linspace(-0.5, 5.5, 1000)
# Various PDFs to visualize
if distribution == 'uniform':
# Uniform distribution from 0 to 5
y = np.where((x >= 0) & (x <= 5), 0.2, 0)
title = f"Uniform PDF from 0 to 5"
elif distribution == 'triangular':
# Triangular distribution peaked at 2.5
y = np.where(x <= 2.5, x/6.25, (5-x)/6.25) # peak at 2.5
y = np.where((x < 0) | (x > 5), 0, y)
title = f"Triangular PDF from 0 to 5"
elif distribution == 'exponential':
lambda_param = 0.5
y = np.where(x >= 0, lambda_param * np.exp(-lambda_param * x), 0)
title = f"Exponential PDF with λ = {lambda_param}"
# Plot PDF
ax.plot(x, y, 'b-', linewidth=2, label='PDF $f(x)$')
# Shade the area for the probability P(a ≤ X ≤ b)
mask = (x >= a) & (x <= b)
ax.fill_between(x[mask], y[mask], color='orange', alpha=0.5)
# Calculate the probability
dx = x[1] - x[0]
probability = np.sum(y[mask]) * dx
# vertical lines at a and b
ax.axvline(x=a, color='r', linestyle='--', alpha=0.7,
label=f'a = {a:.1f}')
ax.axvline(x=b, color='g', linestyle='--', alpha=0.7,
label=f'b = {b:.1f}')
# horizontal line at y=0
ax.axhline(y=0, color='black', linestyle='-', alpha=0.3)
# labels and title
ax.set_xlabel('x')
ax.set_ylabel('Probability Density $f(x)$')
ax.set_title(title)
ax.legend(loc='upper right')
# relevant annotations
ax.annotate(f'$P({a:.1f} \leq X \leq {b:.1f}) = {probability:.4f}$',
xy=(0.5, 0.9), xycoords='axes fraction',
bbox=dict(boxstyle='round,pad=0.5', facecolor='white', alpha=0.8),
horizontalalignment='center', fontsize=12)
plt.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return fig, probability
return (create_pdf_visualization,)
@app.cell(hide_code=True)
def _(np, plt, sympy):
def create_example_pdf_visualization():
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# x-values
x = np.linspace(-0.5, 2.5, 1000)
# PDF function
C = 3/8
pdf = np.where((x > 0) & (x < 2), C * (4*x - 2*x**2), 0)
# CDF
cdf = np.zeros_like(x)
for i, val in enumerate(x):
if val <= 0:
cdf[i] = 0
elif val >= 2:
cdf[i] = 1
else:
# Analytical form: C*(2x^2 - 2x^3/3)
cdf[i] = C * (2*val**2 - (2*val**3)/3)
# PDF Plot
ax1.plot(x, pdf, 'b-', linewidth=2)
ax1.set_title('PDF: $f(x) = \\frac{3}{8}(4x - 2x^2)$ for $0 < x < 2$')
ax1.set_xlabel('x')
ax1.set_ylabel('Probability Density')
ax1.grid(alpha=0.3)
# Highlight the area for P(X > 1)
mask = (x > 1) & (x < 2)
ax1.fill_between(x[mask], pdf[mask], color='orange', alpha=0.5,
label='P(X > 1) = 0.5')
# Add vertical line at x=1
ax1.axvline(x=1, color='r', linestyle='--', alpha=0.7)
ax1.legend()
# CDF Plot
ax2.plot(x, cdf, 'r-', linewidth=2)
ax2.set_title('CDF: $F(x)$ for the Example Distribution')
ax2.set_xlabel('x')
ax2.set_ylabel('Cumulative Probability')
ax2.grid(alpha=0.3)
# Mark appropriate (F(1) & F(2)) points)
ax2.plot(1, cdf[np.abs(x-1).argmin()], 'ro', markersize=8)
ax2.plot(2, cdf[np.abs(x-2).argmin()], 'ro', markersize=8)
# annotations
F_1 = C * (2*1**2 - (2*1**3)/3) # F(1)
ax2.annotate(f'F(1) = {F_1:.3f}', xy=(1, F_1), xytext=(1.1, 0.4),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
ax2.annotate(f'F(2) = 1', xy=(2, 1), xytext=(1.7, 0.8),
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
ax2.annotate(f'P(X > 1) = 1 - F(1) = {1-F_1:.3f}', xy=(1.5, 0.7),
bbox=dict(boxstyle='round,pad=0.5', facecolor='orange', alpha=0.2))
# common x-limits
for ax in [ax1, ax2]:
ax.set_xlim(-0.25, 2.25)
plt.tight_layout()
plt.gca()
return fig
def symbolic_calculation():
x = sympy.symbols('x')
C = sympy.Rational(3, 8)
# PDF defn
pdf_expr = C * (4*x - 2*x**2)
# Verify PDF integrates to 1
total_prob = sympy.integrate(pdf_expr, (x, 0, 2))
# Calculate P(X > 1)
prob_gt_1 = sympy.integrate(pdf_expr, (x, 1, 2))
return f"""Symbolic calculation verification:
1. Total probability: ∫₀² {C}(4x - 2x²) dx = {total_prob}
2. P(X > 1): ∫₁² {C}(4x - 2x²) dx = {prob_gt_1}
"""
return create_example_pdf_visualization, symbolic_calculation
if __name__ == "__main__":
app.run()
|