Spaces:
Running
Running
File size: 39,249 Bytes
efdae9c ac93bf0 efdae9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.1",
# "scipy==1.15.2",
# "wigglystuff==0.1.10",
# "numpy==2.2.4",
# ]
# ///
import marimo
__generated_with = "0.11.26"
app = marimo.App(width="medium", app_title="Normal Distribution")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Normal Distribution
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/normal/), by Stanford professor Chris Piech._
The Normal (also known as Gaussian) distribution is one of the most important probability distributions in statistics and data science. It's characterized by a symmetric bell-shaped curve and is fully defined by two parameters: mean (μ) and variance (σ²).
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Normal Random Variable Definition
The Normal (or Gaussian) random variable is denoted as:
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
Where:
- $X$ is our random variable
- $\mathcal{N}$ indicates it follows a Normal distribution
- $\mu$ is the mean parameter
- $\sigma^2$ is the variance parameter (sometimes written as $\sigma$ for standard deviation)
```
X ~ N(μ, σ²)
↑ ↑ ↑ ↑
| | | +-- Variance (spread)
| | | of the distribution
| | +-- Mean (center)
| | of the distribution
| +-- Indicates Normal
| distribution
|
Our random variable
```
The Normal distribution is particularly important for many reasons:
1. It arises naturally from the sum of independent random variables (Central Limit Theorem)
2. It appears frequently in natural phenomena
3. It is the maximum entropy distribution given a fixed mean and variance
4. It simplifies many mathematical calculations in statistics and probability
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Properties of Normal Distribution
| Property | Formula |
|----------|---------|
| Notation | $X \sim \mathcal{N}(\mu, \sigma^2)$ |
| Description | A common, naturally occurring distribution |
| Parameters | $\mu \in \mathbb{R}$, the mean<br>$\sigma^2 \in \mathbb{R}^+$, the variance |
| Support | $x \in \mathbb{R}$ |
| PDF equation | $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ |
| CDF equation | $F(x) = \Phi(\frac{x-\mu}{\sigma})$ where $\Phi$ is the CDF of the standard normal |
| Expectation | $E[X] = \mu$ |
| Variance | $\text{Var}(X) = \sigma^2$ |
The PDF (Probability Density Function) reaches its maximum value at $x = \mu$, where the exponent becomes zero and $e^0 = 1$.
"""
)
return
@app.cell(hide_code=True)
def _(mean_slider, mo, std_slider):
mo.md(
f"""
The figure below shows a comparison between:
- The **Standard Normal Distribution** (purple curve): N(0, 1)
- A **Normal Distribution** with the parameters you selected (blue curve)
Adjust the mean (μ) {mean_slider} and standard deviation (σ) {std_slider} below to see how the normal distribution changes shape.
"""
)
return
@app.cell(hide_code=True)
def _(
create_distribution_comparison,
fig_to_image,
mean_slider,
mo,
std_slider,
):
# values from the sliders
current_mu = mean_slider.amount
current_sigma = std_slider.amount
# Create plot
comparison_fig = create_distribution_comparison(current_mu, current_sigma)
# Call, convert and display
comp_image = mo.image(fig_to_image(comparison_fig), width="100%")
comp_image
return comp_image, comparison_fig, current_mu, current_sigma
@app.cell(hide_code=True)
def _(mean_slider, mo, std_slider):
mo.md(
f"""
## Interactive Normal Distribution Visualization
The shape of a normal distribution is determined by two key parameters:
- The **mean (μ):** {mean_slider} controls the center of the distribution.
- The **standard deviation (σ):** {std_slider} controls the spread (width) of the distribution.
Try adjusting these parameters to see how they affect the shape of the distribution below:
"""
)
return
@app.cell(hide_code=True)
def _(create_normal_pdf_plot, fig_to_image, mean_slider, mo, std_slider):
# value from widgets
_current_mu = mean_slider.amount
_current_sigma = std_slider.amount
# Create visualization
pdf_fig = create_normal_pdf_plot(_current_mu, _current_sigma)
# Display plot
pdf_image = mo.image(fig_to_image(pdf_fig), width="100%")
pdf_explanation = mo.md(
r"""
**Understanding the Normal Distribution Visualization:**
- **PDF (top)**: The probability density function shows the relative likelihood of different values.
The highest point occurs at the mean (μ).
- **Shaded regions**: The green shaded areas represent:
- μ ± 1σ: Contains approximately 68.3% of the probability
- μ ± 2σ: Contains approximately 95.5% of the probability
- μ ± 3σ: Contains approximately 99.7% of the probability (the "68-95-99.7 rule")
- **CDF (bottom)**: The cumulative distribution function shows the probability that X is less than or equal to a given value.
- At x = μ, the CDF equals 0.5 (50% probability)
- At x = μ + σ, the CDF equals approximately 0.84 (84% probability)
- At x = μ - σ, the CDF equals approximately 0.16 (16% probability)
"""
)
mo.vstack([pdf_image, pdf_explanation])
return pdf_explanation, pdf_fig, pdf_image
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Standard Normal Distribution
The **Standard Normal Distribution** is a special case of the normal distribution where $\mu = 0$ and $\sigma = 1$. We denote it as:
$$Z \sim \mathcal{N}(0, 1)$$
This distribution is particularly important because:
1. Any normal distribution can be transformed into the standard normal
2. Statistical tables and calculations often use the standard normal as a reference
### Standardizing a Normal Random Variable
For any normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, we can transform it to the standard normal $Z$ using:
$$Z = \frac{X - \mu}{\sigma}$$
Let's see the mathematical derivation:
\begin{align*}
W &= \frac{X -\mu}{\sigma} && \text{Subtract by $\mu$ and divide by $\sigma$} \\
&= \frac{1}{\sigma}X - \frac{\mu}{\sigma} && \text{Use algebra to rewrite the equation}\\
&= aX + b && \text{Linear transform where $a = \frac{1}{\sigma}$, $b = -\frac{\mu}{\sigma}$}\\
&\sim \mathcal{N}(a\mu + b, a^2\sigma^2) && \text{The linear transform of a Normal is another Normal}\\
&\sim \mathcal{N}\left(\frac{\mu}{\sigma} - \frac{\mu}{\sigma}, \frac{\sigma^2}{\sigma^2}\right) && \text{Substitute values for $a$ and $b$}\\
&\sim \mathcal{N}(0, 1) && \text{The standard normal}
\end{align*}
This transformation is the foundation for many statistical tests and probability calculations.
"""
)
return
@app.cell(hide_code=True)
def _(create_standardization_plot, fig_to_image, mo):
# Create and display visualization
stand_fig = create_standardization_plot()
# Display
stand_image = mo.image(fig_to_image(stand_fig), width="100%")
stand_explanation = mo.md(
r"""
**Standardizing a Normal Distribution: A Two-Step Process**
The visualization above shows the process of transforming any normal distribution to the standard normal:
1. **Shift the distribution** (left plot): First, we subtract the mean (μ) from X, centering the distribution at 0.
2. **Scale the distribution** (right plot): Next, we divide by the standard deviation (σ), which adjusts the spread to match the standard normal.
The resulting standard normal distribution Z ~ N(0,1) has a mean of 0 and a variance of 1.
This transformation allows us to use standardized tables and calculations for any normal distribution.
"""
)
mo.vstack([stand_image, stand_explanation])
return stand_explanation, stand_fig, stand_image
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Linear Transformations of Normal Variables
One useful property of the normal distribution is that linear transformations of normal random variables remain normal.
If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = aX + b$ (where $a$ and $b$ are constants), then:
$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$
This means:
- The mean is transformed by $a\mu + b$
- The variance is transformed by $a^2\sigma^2$
This property is extremely useful in statistics and probability calculations, as it allows us to easily determine the _distribution_ of transformed variables.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Calculating Probabilities with the Normal CDF
Unlike many other distributions, the normal distribution does not have a closed-form expression for its CDF. However, we can use the standard normal CDF (denoted as $\Phi$) to calculate probabilities.
For any normal random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, the CDF is:
$$F_X(x) = P(X \leq x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$
Where $\Phi$ is the CDF of the standard normal distribution.
### Derivation
\begin{align*}
F_X(x) &= P(X \leq x) \\
&= P\left(\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma}\right) \\
&= P\left(Z \leq \frac{x - \mu}{\sigma}\right) \\
&= \Phi\left(\frac{x - \mu}{\sigma}\right)
\end{align*}
Let's look at some examples of calculating probabilities with normal distributions.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md("""## Examples of Normal Distributions""")
return
@app.cell(hide_code=True)
def _(create_probability_example, fig_to_image, mo):
# Create visualization
default_mu = 3
default_sigma = 4
default_query = 0
prob_fig, prob_value, ex_z_score = create_probability_example(default_mu, default_sigma, default_query)
# Display
prob_image = mo.image(fig_to_image(prob_fig), width="100%")
prob_explanation = mo.md(
f"""
**Example: Let X ~ N(3, 16), what is P(X > 0)?**
To solve this probability question:
1. First, we standardize the query value:
Z = (x - μ) / σ = (0 - 3) / 4 = -0.75
2. Then we calculate using the standard normal CDF:
P(X > 0) = P(Z > -0.75) = 1 - P(Z ≤ -0.75) = 1 - Φ(-0.75)
3. Because the standard normal is symmetric:
1 - Φ(-0.75) = Φ(0.75) = {prob_value:.3f}
The shaded orange area in the graph represents this probability of approximately {prob_value:.3f}.
"""
)
mo.vstack([prob_image, prob_explanation])
return (
default_mu,
default_query,
default_sigma,
ex_z_score,
prob_explanation,
prob_fig,
prob_image,
prob_value,
)
@app.cell(hide_code=True)
def _(create_range_probability_example, fig_to_image, mo, stats):
# Create visualization
default_range_mu = 3
default_range_sigma = 4
default_range_lower = 2
default_range_upper = 5
range_fig, range_prob, range_z_lower, range_z_upper = create_range_probability_example(
default_range_mu, default_range_sigma, default_range_lower, default_range_upper)
# Display
range_image = mo.image(fig_to_image(range_fig), width="100%")
range_explanation = mo.md(
f"""
**Example: Let X ~ N(3, 16), what is P(2 < X < 5)?**
To solve this range probability question:
1. First, we standardize both bounds:
Z_lower = (lower - μ) / σ = (2 - 3) / 4 = -0.25
Z_upper = (upper - μ) / σ = (5 - 3) / 4 = 0.5
2. Then we calculate using the standard normal CDF:
P(2 < X < 5) = P(-0.25 < Z < 0.5)
= Φ(0.5) - Φ(-0.25)
= Φ(0.5) - (1 - Φ(0.25))
= Φ(0.5) + Φ(0.25) - 1
3. Computing these values:
= {stats.norm.cdf(0.5):.3f} + {stats.norm.cdf(0.25):.3f} - 1
= {range_prob:.3f}
The shaded orange area in the graph represents this probability of approximately {range_prob:.3f}.
"""
)
mo.vstack([range_image, range_explanation])
return (
default_range_lower,
default_range_mu,
default_range_sigma,
default_range_upper,
range_explanation,
range_fig,
range_image,
range_prob,
range_z_lower,
range_z_upper,
)
@app.cell(hide_code=True)
def _(create_voltage_example_visualization, fig_to_image, mo):
# Create visualization
voltage_fig, voltage_error_prob = create_voltage_example_visualization()
# Display
voltage_image = mo.image(fig_to_image(voltage_fig), width="100%")
voltage_explanation = mo.md(
r"""
**Example: Signal Transmission with Noise**
In this example, we're sending digital signals over a wire:
- We send voltage 2 to represent a binary "1"
- We send voltage -2 to represent a binary "0"
The received signal R is the sum of the transmitted voltage (X) and random noise (Y):
R = X + Y, where Y ~ N(0, 1)
When decoding, we use a threshold of 0.5:
- If R ≥ 0.5, we interpret it as "1"
- If R < 0.5, we interpret it as "0"
Let's calculate the probability of error when sending a "1" (voltage = 2):
\begin{align*}
P(\text{Error when sending "1"}) &= P(X + Y < 0.5) \\
&= P(2 + Y < 0.5) \\
&= P(Y < -1.5) \\
&= \Phi(-1.5) \\
&\approx 0.067
\end{align*}
Therefore, the probability of incorrectly decoding a transmitted "1" as "0" is approximately 6.7%.
The orange shaded area in the plot represents this error probability.
"""
)
mo.vstack([voltage_image, voltage_explanation])
return voltage_error_prob, voltage_explanation, voltage_fig, voltage_image
@app.cell(hide_code=True)
def emirical_rule(mo):
mo.md(
r"""
## The 68-95-99.7 Rule (Empirical Rule)
One of the most useful properties of the normal distribution is the "[68-95-99.7 rule](https://en.wikipedia.org/wiki/68-95-99.7_rule)," which states that:
- Approximately 68% of the data falls within 1 standard deviation of the mean
- Approximately 95% of the data falls within 2 standard deviations of the mean
- Approximately 99.7% of the data falls within 3 standard deviations of the mean
Let's verify this with a calculation for the 68% rule:
\begin{align}
P(\mu - \sigma < X < \mu + \sigma)
&= P(X < \mu + \sigma) - P(X < \mu - \sigma) \\
&= \Phi\left(\frac{(\mu + \sigma)-\mu}{\sigma}\right) - \Phi\left(\frac{(\mu - \sigma)-\mu}{\sigma}\right) \\
&= \Phi\left(\frac{\sigma}{\sigma}\right) - \Phi\left(\frac{-\sigma}{\sigma}\right) \\
&= \Phi(1) - \Phi(-1) \\
&\approx 0.8413 - 0.1587 \\
&\approx 0.6826 \approx 68.3\%
\end{align}
This calculation works for any normal distribution, regardless of the values of $\mu$ and $\sigma$!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""The Cumulative Distribution Function (CDF) gives the probability that a random variable is less than or equal to a specific value. Use the interactive calculator below to compute CDF values for a normal distribution.""")
return
@app.cell(hide_code=True)
def _(mo, mu_slider, sigma_slider, x_slider):
mo.md(
f"""
## Interactive Normal CDF Calculator
Use the sliders below to explore different probability calculations:
**Query value (x):** {x_slider} — The value at which to evaluate F(x) = P(X ≤ x)
**Mean (μ):** {mu_slider} — The center of the distribution
**Standard deviation (σ):** {sigma_slider} — The spread of the distribution (larger σ means more spread)
"""
)
return
@app.cell(hide_code=True)
def _(
create_cdf_calculator_plot,
fig_to_image,
mo,
mu_slider,
sigma_slider,
x_slider,
):
# Values from widgets
calc_x = x_slider.amount
calc_mu = mu_slider.amount
calc_sigma = sigma_slider.amount
# Create visualization
calc_fig, cdf_value = create_cdf_calculator_plot(calc_x, calc_mu, calc_sigma)
# Standardized z-score
calc_z_score = (calc_x - calc_mu) / calc_sigma
# Display
calc_image = mo.image(fig_to_image(calc_fig), width="100%")
calc_result = mo.md(
f"""
### Results:
For a Normal distribution with parameters μ = {calc_mu:.1f} and σ = {calc_sigma:.1f}:
- The value x = {calc_x:.1f} corresponds to a z-score of z = {calc_z_score:.3f}
- The CDF value F({calc_x:.1f}) = P(X ≤ {calc_x:.1f}) = {cdf_value:.3f}
- This means the probability that X is less than or equal to {calc_x:.1f} is {cdf_value*100:.1f}%
**Computing this in Python:**
```python
from scipy import stats
# Using the one-line method
p = stats.norm.cdf({calc_x:.1f}, {calc_mu:.1f}, {calc_sigma:.1f})
# OR using the two-line method
X = stats.norm({calc_mu:.1f}, {calc_sigma:.1f})
p = X.cdf({calc_x:.1f})
```
**Note:** In SciPy's `stats.norm`, the second parameter is the standard deviation (σ), not the variance (σ²).
"""
)
mo.vstack([calc_image, calc_result])
return (
calc_fig,
calc_image,
calc_mu,
calc_result,
calc_sigma,
calc_x,
calc_z_score,
cdf_value,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🤔 Test Your Understanding
Test your knowledge with these true/false questions about normal distributions:
/// details | For a normal random variable X ~ N(μ, σ²), the probability that X takes on exactly the value μ is highest among all possible values.
**✅ True**
While the PDF is indeed highest at x = μ, making this the most likely value in terms of density, remember that for continuous random variables, the probability of any exact value is zero. The statement refers to the density function being maximized at the mean.
///
/// details | The probability that a normal random variable X equals any specific exact value (e.g., P(X = 3)) is always zero.
**✅ True**
For continuous random variables including the normal, the probability of any exact value is zero. Probabilities only make sense for ranges of values, which is why we integrate the PDF over intervals.
///
/// details | If X ~ N(μ, σ²), then aX + b ~ N(aμ + b, a²σ²) for any constants a and b.
**✅ True**
Linear transformations of normal random variables remain normal, with the given transformation of the parameters. This is a key property that makes normal distributions particularly useful.
///
/// details | If X ~ N(5, 9) and Y ~ N(3, 4) are independent, then X + Y ~ N(8, 5).
**❌ False**
While the mean of the sum is indeed the sum of the means (5 + 3 = 8), the variance of the sum is the sum of the variances (9 + 4 = 13), not 5. The correct distribution would be X + Y ~ N(8, 13).
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
We've taken a tour of Normal distributions; probably the most famous probability distribution you'll encounter in statistics. It's that nice bell-shaped curve that shows up everywhere from heights/ weights to memes to measurement errors & stock returns.
The Normal distribution isn't just pretty — it's incredibly practical. With just two parameters (mean and standard deviation), you can describe complex phenomena and make powerful predictions. Plus, thanks to the Central Limit Theorem, many random processes naturally converge to this distribution, which is why it's so prevalent.
**What we covered:**
- The mathematical definition and key properties of Normal random variables
- How to transform any Normal distribution to the standard Normal
- Calculating probabilities using the CDF (no more looking up values in those tiny tables in the back of textbooks or Clark's table!)
Whether you're analyzing data, designing experiments, or building ML models, the concepts we explored provide a solid foundation for working with this fundamental distribution.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Appendix (helper code and functions)""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _():
from wigglystuff import TangleSlider
return (TangleSlider,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_normal_pdf_plot(mu, sigma):
# Range for x values (show μ ± 4σ)
x = np.linspace(mu - 4*sigma, mu + 4*sigma, 1000)
pdf = stats.norm.pdf(x, mu, sigma)
# Calculate CDF values
cdf = stats.norm.cdf(x, mu, sigma)
# Create plot with two subplots for (PDF and CDF)
pdf_fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
# PDF plot
ax1.plot(x, pdf, color='royalblue', linewidth=2, label='PDF')
ax1.fill_between(x, pdf, color='royalblue', alpha=0.2)
# Vertical line at mean
ax1.axvline(x=mu, color='red', linestyle='--', linewidth=1.5,
label=f'Mean: μ = {mu:.1f}')
# Stdev regions
for i in range(1, 4):
alpha = 0.1 if i > 1 else 0.2
percentage = 100*stats.norm.cdf(i) - 100*stats.norm.cdf(-i)
label = f'μ ± {i}σ: {percentage:.1f}%' if i == 1 else None
ax1.axvspan(mu - i*sigma, mu + i*sigma, alpha=alpha, color='green',
label=label)
# Annotations
ax1.annotate(f'μ = {mu:.1f}', xy=(mu, max(pdf)*0.15), xytext=(mu+0.5*sigma, max(pdf)*0.4),
arrowprops=dict(facecolor='black', width=1, shrink=0.05))
ax1.annotate(f'σ = {sigma:.1f}',
xy=(mu+sigma, stats.norm.pdf(mu+sigma, mu, sigma)),
xytext=(mu+1.5*sigma, stats.norm.pdf(mu+sigma, mu, sigma)*1.5),
arrowprops=dict(facecolor='black', width=1, shrink=0.05))
# some styling
ax1.set_title(f'Normal Distribution PDF: N({mu:.1f}, {sigma:.1f}²)')
ax1.set_xlabel('x')
ax1.set_ylabel('Probability Density: f(x)')
ax1.legend(loc='upper right')
ax1.grid(alpha=0.3)
# CDF plot
ax2.plot(x, cdf, color='darkorange', linewidth=2, label='CDF')
# key CDF values mark
key_points = [
(mu-sigma, stats.norm.cdf(mu-sigma, mu, sigma), "16%"),
(mu, 0.5, "50%"),
(mu+sigma, stats.norm.cdf(mu+sigma, mu, sigma), "84%")
]
for point, value, label in key_points:
ax2.plot(point, value, 'ro')
ax2.annotate(f'{label}',
xy=(point, value),
xytext=(point+0.2*sigma, value-0.1),
arrowprops=dict(facecolor='black', width=1, shrink=0.05))
# CDF styling
ax2.set_title(f'Normal Distribution CDF: N({mu:.1f}, {sigma:.1f}²)')
ax2.set_xlabel('x')
ax2.set_ylabel('Cumulative Probability: F(x)')
ax2.grid(alpha=0.3)
plt.tight_layout()
return pdf_fig
return (create_normal_pdf_plot,)
@app.cell(hide_code=True)
def _(base64, io):
from matplotlib.figure import Figure
# convert matplotlib figures to images (helper code)
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode('utf-8')
return f"data:image/png;base64,{img_str}"
return Figure, fig_to_image
@app.cell(hide_code=True)
def _():
# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import io
import base64
return base64, io, np, plt, stats
@app.cell(hide_code=True)
def _(TangleSlider, mo):
mean_slider = mo.ui.anywidget(TangleSlider(
amount=0,
min_value=-5,
max_value=5,
step=0.1,
digits=1
))
std_slider = mo.ui.anywidget(TangleSlider(
amount=1,
min_value=0.1,
max_value=3,
step=0.1,
digits=1
))
return mean_slider, std_slider
@app.cell(hide_code=True)
def _(TangleSlider, mo):
x_slider = mo.ui.anywidget(TangleSlider(
amount=0,
min_value=-5,
max_value=5,
step=0.1,
digits=1
))
mu_slider = mo.ui.anywidget(TangleSlider(
amount=0,
min_value=-5,
max_value=5,
step=0.1,
digits=1
))
sigma_slider = mo.ui.anywidget(TangleSlider(
amount=1,
min_value=0.1,
max_value=3,
step=0.1,
digits=1
))
return mu_slider, sigma_slider, x_slider
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_distribution_comparison(mu=5, sigma=6):
# Create figure and axis
comparison_fig, ax = plt.subplots(figsize=(10, 6))
# X range for plotting
x = np.linspace(-10, 20, 1000)
# Standard normal
std_normal = stats.norm.pdf(x, 0, 1)
# Our example normal
example_normal = stats.norm.pdf(x, mu, sigma)
# Plot both distributions
ax.plot(x, std_normal, 'darkviolet', linewidth=2, label='Standard Normal')
ax.plot(x, example_normal, 'blue', linewidth=2, label=f'X ~ N({mu}, {sigma}²)')
# format the plot
ax.set_xlim(-10, 20)
ax.set_ylim(0, 0.45)
ax.set_xlabel('x')
ax.set_ylabel('Probability Density')
ax.grid(True, alpha=0.3)
ax.legend()
# Decorative text box for parameters
props = dict(boxstyle='round', facecolor='white', alpha=0.9)
textstr = '\n'.join((
r'Normal (aka Gaussian) Random Variable',
r'',
f'Parameter $\mu$: {mu}',
f'Parameter $\sigma$: {sigma}'
))
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=10,
verticalalignment='top', bbox=props)
return comparison_fig
return (create_distribution_comparison,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_voltage_example_visualization():
# Create data for plotting
x = np.linspace(-4, 4, 1000)
# Signal without noise (X = 2)
signal_value = 2
# Noise distribution (Y ~ N(0, 1))
noise_pdf = stats.norm.pdf(x, 0, 1)
# Signal + Noise distribution (R = X + Y ~ N(2, 1))
received_pdf = stats.norm.pdf(x, signal_value, 1)
# Create figure
voltage_fig, ax = plt.subplots(figsize=(10, 6))
# Plot the noise distribution
ax.plot(x, noise_pdf, 'blue', linewidth=1.5, alpha=0.6,
label='Noise: Y ~ N(0, 1)')
# received signal distribution
ax.plot(x, received_pdf, 'red', linewidth=2,
label=f'Received: R ~ N({signal_value}, 1)')
# vertical line at the decision boundary (0.5)
threshold = 0.5
ax.axvline(x=threshold, color='green', linestyle='--', linewidth=2,
label=f'Decision threshold: {threshold}')
# Shade the error region
mask = x < threshold
error_prob = stats.norm.cdf(threshold, signal_value, 1)
ax.fill_between(x[mask], received_pdf[mask], color='darkorange', alpha=0.5,
label=f'Error probability: {error_prob:.3f}')
# Styling
ax.set_title('Voltage Transmission Example: Probability of Error')
ax.set_xlabel('Voltage')
ax.set_ylabel('Probability Density')
ax.legend(loc='upper left')
ax.grid(alpha=0.3)
# Add explanatory annotations
ax.text(1.5, 0.1, 'When sending "1" (voltage=2),\nthis area represents\nthe error probability',
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1))
plt.tight_layout()
plt.gca()
return voltage_fig, error_prob
return (create_voltage_example_visualization,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_cdf_calculator_plot(calc_x, calc_mu, calc_sigma):
# Data range for plotting
x_range = np.linspace(calc_mu - 4*calc_sigma, calc_mu + 4*calc_sigma, 1000)
pdf = stats.norm.pdf(x_range, calc_mu, calc_sigma)
cdf = stats.norm.cdf(x_range, calc_mu, calc_sigma)
# Calculate the CDF at x
cdf_at_x = stats.norm.cdf(calc_x, calc_mu, calc_sigma)
# Create figure with two subplots
calc_fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
# Plot PDF on top subplot
ax1.plot(x_range, pdf, color='royalblue', linewidth=2, label='PDF')
# area shade for P(X ≤ x)
mask = x_range <= calc_x
ax1.fill_between(x_range[mask], pdf[mask], color='darkorange', alpha=0.6)
# Vertical line at x
ax1.axvline(x=calc_x, color='red', linestyle='--', linewidth=1.5)
# PDF labels and styling
ax1.set_title(f'Normal PDF with Area P(X ≤ {calc_x:.1f}) Highlighted')
ax1.set_xlabel('x')
ax1.set_ylabel('Probability Density')
ax1.annotate(f'x = {calc_x:.1f}', xy=(calc_x, 0), xytext=(calc_x, -0.01),
horizontalalignment='center', color='red')
ax1.grid(alpha=0.3)
# CDF on bottom subplot
ax2.plot(x_range, cdf, color='green', linewidth=2, label='CDF')
# Mark the point (x, CDF(x))
ax2.plot(calc_x, cdf_at_x, 'ro', markersize=8)
# CDF labels and styling
ax2.set_title(f'Normal CDF: F({calc_x:.1f}) = {cdf_at_x:.3f}')
ax2.set_xlabel('x')
ax2.set_ylabel('Cumulative Probability')
ax2.annotate(f'F({calc_x:.1f}) = {cdf_at_x:.3f}',
xy=(calc_x, cdf_at_x),
xytext=(calc_x + 0.5*calc_sigma, cdf_at_x - 0.1),
arrowprops=dict(facecolor='black', width=1, shrink=0.05),
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1))
ax2.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return calc_fig, cdf_at_x
return (create_cdf_calculator_plot,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_standardization_plot():
x = np.linspace(-6, 6, 1000)
# Original distribution N(2, 1.5²)
mu_original, sigma_original = 2, 1.5
pdf_original = stats.norm.pdf(x, mu_original, sigma_original)
# shifted distribution N(0, 1.5²)
mu_shifted, sigma_shifted = 0, 1.5
pdf_shifted = stats.norm.pdf(x, mu_shifted, sigma_shifted)
# Standard normal N(0, 1)
mu_standard, sigma_standard = 0, 1
pdf_standard = stats.norm.pdf(x, mu_standard, sigma_standard)
# Create visualization
stand_fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Plot on left: Original and shifted distributions
ax1.plot(x, pdf_original, 'royalblue', linewidth=2,
label=f'Original: N({mu_original}, {sigma_original}²)')
ax1.plot(x, pdf_shifted, 'darkorange', linewidth=2,
label=f'Shifted: N({mu_shifted}, {sigma_shifted}²)')
# Add arrow to show the shift
shift_x1, shift_y1 = mu_original, stats.norm.pdf(mu_original, mu_original, sigma_original)*0.6
shift_x2, shift_y2 = mu_shifted, stats.norm.pdf(mu_shifted, mu_shifted, sigma_shifted)*0.6
ax1.annotate('', xy=(shift_x2, shift_y2), xytext=(shift_x1, shift_y1),
arrowprops=dict(facecolor='black', width=1.5, shrink=0.05))
ax1.text(0.8, 0.28, 'Subtract μ', transform=ax1.transAxes)
# Plot on right: Shifted and standard normal
ax2.plot(x, pdf_shifted, 'darkorange', linewidth=2,
label=f'Shifted: N({mu_shifted}, {sigma_shifted}²)')
ax2.plot(x, pdf_standard, 'green', linewidth=2,
label=f'Standard: N({mu_standard}, {sigma_standard}²)')
# Add arrow to show the scaling
scale_x1, scale_y1 = 2*sigma_shifted, stats.norm.pdf(2*sigma_shifted, mu_shifted, sigma_shifted)*0.8
scale_x2, scale_y2 = 2*sigma_standard, stats.norm.pdf(2*sigma_standard, mu_standard, sigma_standard)*0.8
ax2.annotate('', xy=(scale_x2, scale_y2), xytext=(scale_x1, scale_y1),
arrowprops=dict(facecolor='black', width=1.5, shrink=0.05))
ax2.text(0.75, 0.5, 'Divide by σ', transform=ax2.transAxes)
# some styling
for ax in (ax1, ax2):
ax.set_xlabel('x')
ax.set_ylabel('Probability Density')
ax.grid(alpha=0.3)
ax.legend()
ax1.set_title('Step 1: Shift the Distribution')
ax2.set_title('Step 2: Scale the Distribution')
plt.tight_layout()
plt.gca()
return stand_fig
return (create_standardization_plot,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_probability_example(example_mu=3, example_sigma=4, example_query=0):
# Create data range
x = np.linspace(example_mu - 4*example_sigma, example_mu + 4*example_sigma, 1000)
pdf = stats.norm.pdf(x, example_mu, example_sigma)
# probability calc
prob_value = 1 - stats.norm.cdf(example_query, example_mu, example_sigma)
ex_z_score = (example_query - example_mu) / example_sigma
# Create visualization
prob_fig, ax = plt.subplots(figsize=(10, 6))
# Plot PDF
ax.plot(x, pdf, 'royalblue', linewidth=2)
# area shading representing the probability
mask = x >= example_query
ax.fill_between(x[mask], pdf[mask], color='darkorange', alpha=0.6)
# Add vertical line at query point
ax.axvline(x=example_query, color='red', linestyle='--', linewidth=1.5)
# Annotations
ax.annotate(f'x = {example_query}', xy=(example_query, 0), xytext=(example_query, -0.005),
horizontalalignment='center')
ax.annotate(f'P(X > {example_query}) = {prob_value:.3f}',
xy=(example_query + example_sigma, 0.015),
xytext=(example_query + 1.5*example_sigma, 0.02),
arrowprops=dict(facecolor='black', width=1, shrink=0.05),
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1))
# Standard normal calculation annotation
ax.annotate(f'= P(Z > {ex_z_score:.3f}) = {prob_value:.3f}',
xy=(example_query - example_sigma, 0.01),
xytext=(example_query - 2*example_sigma, 0.015),
arrowprops=dict(facecolor='black', width=1, shrink=0.05),
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1))
# some styling
ax.set_title(f'Example: P(X > {example_query}) where X ~ N({example_mu}, {example_sigma}²)')
ax.set_xlabel('x')
ax.set_ylabel('Probability Density')
ax.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return prob_fig, prob_value, ex_z_score
return (create_probability_example,)
@app.cell(hide_code=True)
def _(np, plt, stats):
def create_range_probability_example(range_mu=3, range_sigma=4, range_lower=2, range_upper=5):
x = np.linspace(range_mu - 4*range_sigma, range_mu + 4*range_sigma, 1000)
pdf = stats.norm.pdf(x, range_mu, range_sigma)
# probability
range_prob = stats.norm.cdf(range_upper, range_mu, range_sigma) - stats.norm.cdf(range_lower, range_mu, range_sigma)
range_z_lower = (range_lower - range_mu) / range_sigma
range_z_upper = (range_upper - range_mu) / range_sigma
# Create visualization
range_fig, ax = plt.subplots(figsize=(10, 6))
# Plot PDF
ax.plot(x, pdf, 'royalblue', linewidth=2)
# Shade the area representing the probability
mask = (x >= range_lower) & (x <= range_upper)
ax.fill_between(x[mask], pdf[mask], color='darkorange', alpha=0.6)
# Add vertical lines at query points
ax.axvline(x=range_lower, color='red', linestyle='--', linewidth=1.5)
ax.axvline(x=range_upper, color='red', linestyle='--', linewidth=1.5)
# Annotations
ax.annotate(f'x = {range_lower}', xy=(range_lower, 0), xytext=(range_lower, -0.005),
horizontalalignment='center')
ax.annotate(f'x = {range_upper}', xy=(range_upper, 0), xytext=(range_upper, -0.005),
horizontalalignment='center')
ax.annotate(f'P({range_lower} < X < {range_upper}) = {range_prob:.3f}',
xy=((range_lower + range_upper)/2, max(pdf[mask])/2),
xytext=((range_lower + range_upper)/2, max(pdf[mask])*1.5),
arrowprops=dict(facecolor='black', width=1, shrink=0.05),
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1),
horizontalalignment='center')
# Standard normal calculation annotation
ax.annotate(f'= P({range_z_lower:.3f} < Z < {range_z_upper:.3f}) = {range_prob:.3f}',
xy=((range_lower + range_upper)/2, max(pdf[mask])/3),
xytext=(range_mu - 2*range_sigma, max(pdf[mask])/1.5),
arrowprops=dict(facecolor='black', width=1, shrink=0.05),
bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1))
ax.set_title(f'Example: P({range_lower} < X < {range_upper}) where X ~ N({range_mu}, {range_sigma}²)')
ax.set_xlabel('x')
ax.set_ylabel('Probability Density')
ax.grid(alpha=0.3)
plt.tight_layout()
plt.gca()
return range_fig, range_prob, range_z_lower, range_z_upper
return (create_range_probability_example,)
if __name__ == "__main__":
app.run()
|