Spaces:
Running
Running
File size: 29,856 Bytes
69ce67c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "matplotlib==3.10.1",
# "scipy==1.15.2",
# "numpy==2.2.4",
# "polars==1.26.0",
# "plotly==5.18.0",
# "scikit-learn==1.6.1",
# ]
# ///
import marimo
__generated_with = "0.12.0"
app = marimo.App(width="medium", app_title="Naive Bayes Classification")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Naive Bayes Classification
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part5/naive_bayes/), by Stanford professor Chris Piech._
Naive Bayes is one of those classic machine learning algorithms that seems almost too simple to work, yet it's surprisingly effective for many classification tasks. I've always found it fascinating how this algorithm applies Bayes' theorem with a strong (but knowingly incorrect) "naive" assumption that all features are independent of each other.
In this notebook, we'll dive into why this supposedly "wrong" assumption still leads to good results. We'll walk through the training process, learn how to make predictions, and see some interactive visualizations that helped me understand the concept better when I was first learning it. We'll also explore why Naive Bayes excels particularly in text classification problems like spam filtering.
If you're new to Naive Bayes, I highly recommend checking out [this excellent explanation by Mahesh Huddar](https://youtu.be/XzSlEA4ck2I?si=AASeh_KP68BAbzy5), which provides a step-by-step walkthrough with a helpful example (which we take a dive into, down below).
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Why "Naive"?
So why is it called "naive"? It's because the algorithm makes an assumption β it assumes all features are completely independent of each other when given the class label.
The math way of saying this is:
$$P(X_1, X_2, \ldots, X_n | Y) = P(X_1 | Y) \times P(X_2 | Y) \times \ldots \times P(X_n | Y) = \prod_{i=1}^{n} P(X_i | Y)$$
This independence assumption is almost always wrong in real data. Think about text classification β if you see the word "cloudy" in a weather report, you're much more likely to also see "rain" than you would be to see "sunshine". These words clearly depend on each other! Or in medical diagnosis, symptoms often occur together as part of syndromes.
But here's the cool part β even though we know this assumption is _technically_ wrong, the algorithm still works remarkably well in practice. By making this simplifying assumption, we:
- Make the math way easier to compute
- Need way less training data to get decent results
- Can handle thousands of features without blowing up computationally
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## The Math Behind Naive Bayes
At its core, Naive Bayes is just an application of Bayes' theorem from our earlier probability notebooks. Let's break it down:
We have some features $\mathbf{X} = [X_1, X_2, \ldots, X_m]$ (like words in an email or symptoms of a disease) and we want to predict a class label $Y$ (like "spam/not spam" or "has disease/doesn't have disease").
What we're really trying to find is:
$$P(Y|\mathbf{X})$$
In other words, "what's the probability of a certain class given the features we observed?" Once we have these probabilities, we simply pick the class with the highest probability:
$$\hat{y} = \underset{y}{\operatorname{argmax}} \text{ } P(Y=y|\mathbf{X}=\mathbf{x})$$
Applying Bayes' theorem (from our earlier probability work), we get:
$$P(Y=y|\mathbf{X}=\mathbf{x}) = \frac{P(Y=y) \times P(\mathbf{X}=\mathbf{x}|Y=y)}{P(\mathbf{X}=\mathbf{x})}$$
Since we're comparing different possible classes for the same input features, the denominator $P(\mathbf{X}=\mathbf{x})$ is the same for all classes. So we can drop it and just compare:
$$\hat{y} = \underset{y}{\operatorname{argmax}} \text{ } P(Y=y) \times P(\mathbf{X}=\mathbf{x}|Y=y)$$
Here's where the "naive" part comes in. Calculating $P(\mathbf{X}=\mathbf{x}|Y=y)$ directly would be a computational nightmare - we'd need counts for every possible combination of feature values. Instead, we make that simplifying "naive" assumption that features are independent of each other:
$$P(\mathbf{X}=\mathbf{x}|Y=y) = \prod_{i=1}^{m} P(X_i=x_i|Y=y)$$
Which gives us our final formula:
$$\hat{y} = \underset{y}{\operatorname{argmax}} \text{ } P(Y=y) \times \prod_{i=1}^{m} P(X_i=x_i|Y=y)$$
In actual implementations, we usually use logarithms to avoid the numerical problems that come with multiplying many small probabilities (they can _underflow_ to zero):
$$\hat{y} = \underset{y}{\operatorname{argmax}} \text{ } \log P(Y=y) + \sum_{i=1}^{m} \log P(X_i=x_i|Y=y)$$
That's it! The really cool thing is that despite this massive simplification, the algorithm often gives surprisingly good results.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Example Problem""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Let's apply Naive Bayes principles to this data (Tennis Training Dataset):""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## A Simple Example: Play Tennis
Let's understand Naive Bayes with a classic example: predicting whether someone will play tennis based on weather conditions. This is the same example used in Mahesh Huddar's excellent video.
Our dataset has these features:
- **Outlook**: Sunny, Overcast, Rainy
- **Temperature**: Hot, Mild, Cool
- **Humidity**: High, Normal
- **Wind**: Strong, Weak
And the target variable:
- **Play Tennis**: Yes, No
### Example Dataset
"""
)
# Create a dataset matching the image (in dict format for proper table rendering)
example_data = [
{"Day": "D1", "Outlook": "Sunny", "Temperature": "Hot", "Humidity": "High", "Wind": "Weak", "Play Tennis": "No"},
{"Day": "D2", "Outlook": "Sunny", "Temperature": "Hot", "Humidity": "High", "Wind": "Strong", "Play Tennis": "No"},
{"Day": "D3", "Outlook": "Overcast", "Temperature": "Hot", "Humidity": "High", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D4", "Outlook": "Rain", "Temperature": "Mild", "Humidity": "High", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D5", "Outlook": "Rain", "Temperature": "Cool", "Humidity": "Normal", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D6", "Outlook": "Rain", "Temperature": "Cool", "Humidity": "Normal", "Wind": "Strong", "Play Tennis": "No"},
{"Day": "D7", "Outlook": "Overcast", "Temperature": "Cool", "Humidity": "Normal", "Wind": "Strong", "Play Tennis": "Yes"},
{"Day": "D8", "Outlook": "Sunny", "Temperature": "Mild", "Humidity": "High", "Wind": "Weak", "Play Tennis": "No"},
{"Day": "D9", "Outlook": "Sunny", "Temperature": "Cool", "Humidity": "Normal", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D10", "Outlook": "Rain", "Temperature": "Mild", "Humidity": "Normal", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D11", "Outlook": "Sunny", "Temperature": "Mild", "Humidity": "Normal", "Wind": "Strong", "Play Tennis": "Yes"},
{"Day": "D12", "Outlook": "Overcast", "Temperature": "Mild", "Humidity": "High", "Wind": "Strong", "Play Tennis": "Yes"},
{"Day": "D13", "Outlook": "Overcast", "Temperature": "Hot", "Humidity": "Normal", "Wind": "Weak", "Play Tennis": "Yes"},
{"Day": "D14", "Outlook": "Rain", "Temperature": "Mild", "Humidity": "High", "Wind": "Strong", "Play Tennis": "No"}
]
# Display the tennis dataset using a table
example_table = mo.ui.table(
data=example_data,
selection=None
)
mo.vstack([
mo.md("#### Tennis Training Dataset"),
example_table
])
return example_data, example_table
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Let's predict whether someone will play tennis given these weather conditions:
- Outlook: Sunny
- Temperature: Cool
- Humidity: High
- Wind: Strong
Let's walk through the calculations step by step:
#### Step 1: Calculate Prior Probabilities
First, we calculate $P(Y=\text{Yes})$ and $P(Y=\text{No})$:
- $P(Y=\text{Yes}) = \frac{9}{14} = 0.64$
- $P(Y=\text{No}) = \frac{5}{14} = 0.36$
#### Step 2: Calculate Conditional Probabilities
Next, we calculate the conditional probabilities for each feature value given each class:
"""
)
return
@app.cell(hide_code=True)
def _(humidity_data, mo, outlook_data, summary_table, temp_data, wind_data):
# Display tables with appropriate styling
mo.vstack([
mo.md("#### Class Distribution"),
summary_table,
mo.md("#### Conditional Probabilities"),
mo.hstack([
mo.vstack([
mo.md("**Outlook**"),
mo.ui.table(
data=outlook_data,
selection=None
)
]),
mo.vstack([
mo.md("**Temperature**"),
mo.ui.table(
data=temp_data,
selection=None
)
])
]),
mo.hstack([
mo.vstack([
mo.md("**Humidity**"),
mo.ui.table(
data=humidity_data,
selection=None
)
]),
mo.vstack([
mo.md("**Wind**"),
mo.ui.table(
data=wind_data,
selection=None
)
])
])
])
return
@app.cell
def _():
# DIY
return
@app.cell(hide_code=True)
def _(mo, solution_accordion):
# Display the accordion
mo.accordion(solution_accordion)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Try a Different Example
What if the conditions were different? Let's say:
- Outlook: Overcast
- Temperature: Hot
- Humidity: Normal
- Wind: Weak
Try working through this example on your own. If you get stuck, you can use the tables above and apply the same method we used in the solution.
"""
)
return
@app.cell
def _():
# DIY
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Interactive Naive Bayes
Let's explore Naive Bayes with an interactive visualization. This will help build intuition about how the algorithm makes predictions and how the naive independence assumption affects results.
"""
)
return
@app.cell(hide_code=True)
def gaussian_viz(
Ellipse,
GaussianNB,
ListedColormap,
class_sep_slider,
controls,
make_classification,
mo,
n_samples_slider,
noise_slider,
np,
pl,
plt,
regenerate_button,
train_test_split,
):
# get values from sliders
class_sep = class_sep_slider.value
noise_val = noise_slider.value
n_samples = int(n_samples_slider.value)
# check if regenerate button was clicked
regenerate_state = regenerate_button.value
# make a dataset with current settings
X, y = make_classification(
n_samples=n_samples,
n_features=2,
n_redundant=0,
n_informative=2,
n_clusters_per_class=1,
class_sep=class_sep * (1 - noise_val), # use noise to reduce separation
random_state=42 if not regenerate_state else np.random.randint(1000)
)
# put data in a dataframe
viz_df = pl.DataFrame({
"Feature1": X[:, 0],
"Feature2": X[:, 1],
"Class": y
})
# split into train/test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# create naive bayes classifier
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# setup grid for boundary visualization
h = 0.1 # step size
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# predict on grid points
grid_points = np.c_[xx.ravel(), yy.ravel()]
Z = gnb.predict(grid_points).reshape(xx.shape)
# calculate class stats
class0_mean = np.mean(X_train[y_train == 0], axis=0)
class1_mean = np.mean(X_train[y_train == 1], axis=0)
class0_var = np.var(X_train[y_train == 0], axis=0)
class1_var = np.var(X_train[y_train == 1], axis=0)
# format for display
class_stats = [
{"Class": "Class 0", "Feature1_Mean": f"{class0_mean[0]:.4f}", "Feature1_Variance": f"{class0_var[0]:.4f}",
"Feature2_Mean": f"{class0_mean[1]:.4f}", "Feature2_Variance": f"{class0_var[1]:.4f}"},
{"Class": "Class 1", "Feature1_Mean": f"{class1_mean[0]:.4f}", "Feature1_Variance": f"{class1_var[0]:.4f}",
"Feature2_Mean": f"{class1_mean[1]:.4f}", "Feature2_Variance": f"{class1_var[1]:.4f}"}
]
# setup plot with two panels
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# colors for our plots
cmap_light = ListedColormap(['#FFAAAA', '#AAAAFF']) # bg colors
cmap_bold = ListedColormap(['#FF0000', '#0000FF']) # point colors
# left: decision boundary
ax1.contourf(xx, yy, Z, alpha=0.3, cmap=cmap_light)
scatter1 = ax1.scatter(X_train[:, 0], X_train[:, 1], c=y_train,
cmap=cmap_bold, edgecolor='k', s=50, alpha=0.8)
scatter2 = ax1.scatter(X_test[:, 0], X_test[:, 1], c=y_test,
cmap=cmap_bold, edgecolor='k', s=25, alpha=0.5)
ax1.set_xlabel('Feature 1')
ax1.set_ylabel('Feature 2')
ax1.set_title('Gaussian Naive Bayes Decision Boundary')
ax1.legend([scatter1.legend_elements()[0][0], scatter2.legend_elements()[0][0]],
['Training Data', 'Test Data'], loc='upper right')
# right: distribution visualization
class0_data = viz_df.filter(pl.col("Class") == 0)
class1_data = viz_df.filter(pl.col("Class") == 1)
ax2.scatter(class0_data["Feature1"], class0_data["Feature2"],
color='red', edgecolor='k', s=50, alpha=0.8, label='Class 0')
ax2.scatter(class1_data["Feature1"], class1_data["Feature2"],
color='blue', edgecolor='k', s=50, alpha=0.8, label='Class 1')
# draw ellipses function
def plot_ellipse(ax, mean, cov, color):
vals, vecs = np.linalg.eigh(cov)
order = vals.argsort()[::-1]
vals = vals[order]
vecs = vecs[:, order]
theta = np.degrees(np.arctan2(*vecs[:, 0][::-1]))
width, height = 2 * np.sqrt(5.991 * vals)
ellip = Ellipse(xy=mean, width=width, height=height, angle=theta,
edgecolor=color, fc='None', lw=2, alpha=0.7)
ax.add_patch(ellip)
# add ellipses for each class accordingly
class0_cov = np.diag(np.var(X_train[y_train == 0], axis=0))
class1_cov = np.diag(np.var(X_train[y_train == 1], axis=0))
plot_ellipse(ax2, class0_mean, class0_cov, 'red')
plot_ellipse(ax2, class1_mean, class1_cov, 'blue')
ax2.set_xlabel('Feature 1')
ax2.set_ylabel('Feature 2')
ax2.set_title('Class-Conditional Distributions (Gaussian)')
ax2.legend(loc='upper right')
plt.tight_layout()
plt.gca()
# show interactive plot
mpl_fig = mo.mpl.interactive(fig)
# show parameters info
mo.md(
r"""
### gaussian parameters by class
each feature follows a normal distribution per class. here are the parameters:
"""
)
# make stats table
stats_table = mo.ui.table(
data=class_stats,
selection="single"
)
mo.md(
r"""
### how it works
1. calculate mean & variance for each feature per class
2. use gaussian pdf to get probabilities for new points
3. apply bayes' theorem to pick most likely class
ellipses show the distributions, decision boundary is where probabilities equal
"""
)
# stack everything together
mo.vstack([
controls.center(),
mpl_fig,
stats_table
])
return (
X,
X_test,
X_train,
Z,
ax1,
ax2,
class0_cov,
class0_data,
class0_mean,
class0_var,
class1_cov,
class1_data,
class1_mean,
class1_var,
class_sep,
class_stats,
cmap_bold,
cmap_light,
fig,
gnb,
grid_points,
h,
mpl_fig,
n_samples,
noise_val,
plot_ellipse,
regenerate_state,
scatter1,
scatter2,
stats_table,
viz_df,
x_max,
x_min,
xx,
y,
y_max,
y_min,
y_test,
y_train,
yy,
)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### what's going on in this demo?
Playing with the sliders changes how our data looks and how the classifier behaves. Class separation controls how far apart the two classes are β higher values make them easier to tell apart. The noise slider adds randomness by reducing that separation, making boundaries fuzzier and classification harder. More samples just gives you more data points to work with.
The left graph shows the decision boundary β that curved line where the classifier switches from predicting one class to another. Red and blue regions show where naive bayes would classify new points. The right graph shows the actual distribution of both classes, with those ellipses representing the gaussian distributions naive bayes is using internally.
Try cranking up the noise and watch how the boundary gets messier. increase separation and see how confident the classifier becomes. This is basically what's happening inside naive bayes β it's looking at each feature's distribution per class and making the best guess based on probabilities. The table below shows the actual parameters (means and variances) the model calculates.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Types of Naive Bayes Classifiers
### Multinomial Naive Bayes
Ideal for text classification where features represent word counts or frequencies.
Mathematical form:
\[P(x_i|y) = \frac{\text{count}(x_i, y) + \alpha}{\sum_{i=1}^{|V|} \text{count}(x_i, y) + \alpha|V|}\]
where:
- \(\alpha\) is the smoothing parameter
- \(|V|\) is the size of the vocabulary
- \(\text{count}(x_i, y)\) is the count of feature \(i\) in class \(y\)
### Bernoulli Naive Bayes
Best for binary features (0/1) β either a word appears or it doesn't.
Mathematical form:
\[P(x_i|y) = p_{iy}^{x_i}(1-p_{iy})^{(1-x_i)}\]
where:
- \(p_{iy}\) is the probability of feature \(i\) occurring in class \(y\)
- \(x_i\) is 1 if the feature is present, 0 otherwise
### Gaussian Naive Bayes
Designed for continuous features, assuming they follow a normal distribution.
Mathematical form:
\[P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)\]
where:
- \(\mu_y\) is the mean of feature values for class \(y\)
- \(\sigma_y^2\) is the variance of feature values for class \(y\)
### Complement Naive Bayes
Particularly effective for imbalanced datasets.
Mathematical form:
\[P(x_i|y) = \frac{\text{count}(x_i, \bar{y}) + \alpha}{\sum_{i=1}^{|V|} \text{count}(x_i, \bar{y}) + \alpha|V|}\]
where:
- \(\bar{y}\) represents all classes except \(y\)
- Other parameters are similar to Multinomial Naive Bayes
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## π€ Test Your Understanding
Test your understanding of Naive Bayes with these statements:
/// details | Multiplying small probabilities in Naive Bayes can lead to numerical underflow.
β
**Correct!** Multiplying many small probabilities can indeed lead to numerical underflow.
That's why in practice, we often use log probabilities and add them instead of multiplying the original probabilities. This prevents numerical underflow and improves computational stability.
///
/// details | Laplace smoothing is unnecessary if your training data covers all possible feature values.
β **Incorrect.** Laplace smoothing is still beneficial even with complete feature coverage.
While Laplace smoothing is crucial for handling unseen feature values, it also helps with small sample sizes by preventing overfitting to the training data. Even with complete feature coverage, some combinations might have very few examples, leading to unreliable probability estimates.
///
/// details | Naive Bayes performs poorly on high-dimensional data compared to other classifiers.
β **Incorrect.** Naive Bayes actually excels with high-dimensional data.
Due to its simplicity and the independence assumption, Naive Bayes scales very well to high-dimensional data. It's particularly effective for text classification where each word is a dimension and there can be thousands of dimensions. Other classifiers might overfit in such high-dimensional spaces.
///
/// details | For text classification, Multinomial Naive Bayes typically outperforms Gaussian Naive Bayes.
β
**Correct!** Multinomial NB is better suited for text classification than Gaussian NB.
Text data typically involves discrete counts (word frequencies) which align better with a multinomial distribution. Gaussian Naive Bayes assumes features follow a normal distribution, which doesn't match the distribution of word frequencies in text documents.
///
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
Throughout this notebook, we've explored Naive Bayes classification. What makes this algorithm particularly interesting is its elegant simplicity combined with surprising effectiveness. Despite making what seems like an overly simplistic assumption β that features are independent given the class β it consistently delivers reasonable performance across a wide range of applications.
The algorithm's power lies in its probabilistic foundation, built upon Bayes' theorem. During training, it simply learns probability distributions: the likelihood of seeing each class (prior probabilities) and the probability of feature values within each class (conditional probabilities). When making predictions, it combines these probabilities using the naive independence assumption, which dramatically simplifies the computation while still maintaining remarkable predictive power.
We've seen how different variants of Naive Bayes adapt to various types of data. Multinomial Naive Bayes excels at text classification by modeling word frequencies, Bernoulli Naive Bayes handles binary features elegantly, and Gaussian Naive Bayes tackles continuous data through normal distributions. Each variant maintains the core simplicity of the algorithm while adapting its probability calculations to match the data's characteristics.
Perhaps most importantly, we've learned that sometimes the most straightforward approaches can be the most practical. Naive Bayes demonstrates that a simple model, well-understood and properly applied, can often outperform more complex alternatives, especially in domains like text classification or when working with limited computational resources or training data.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""appendix (helper code)""")
return
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def init_imports():
# imports for our notebook
import numpy as np
import matplotlib.pyplot as plt
import polars as pl
from scipy import stats
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from matplotlib.colors import ListedColormap
from matplotlib.patches import Ellipse
# for consistent results
np.random.seed(42)
# nicer plots
plt.style.use('seaborn-v0_8-darkgrid')
return (
Ellipse,
GaussianNB,
ListedColormap,
make_classification,
np,
pl,
plt,
stats,
train_test_split,
)
@app.cell(hide_code=True)
def _(example_data, mo):
# occurrences count in example data
yes_count = sum(1 for row in example_data if row["Play Tennis"] == "Yes")
no_count = sum(1 for row in example_data if row["Play Tennis"] == "No")
total = len(example_data)
# summary table with dict format
summary_data = [
{"Class": "Yes", "Count": f"{yes_count}", "Probability": f"{yes_count/total:.2f}"},
{"Class": "No", "Count": f"{no_count}", "Probability": f"{no_count/total:.2f}"},
{"Class": "Total", "Count": f"{total}", "Probability": "1.00"}
]
summary_table = mo.ui.table(
data=summary_data,
selection=None
)
# tables for conditional probabilities matching the image (in dict format)
outlook_data = [
{"Outlook": "Sunny", "Y": "2/9", "N": "3/5"},
{"Outlook": "Overcast", "Y": "4/9", "N": "0"},
{"Outlook": "Rain", "Y": "3/9", "N": "2/5"}
]
temp_data = [
{"Temperature": "Hot", "Y": "2/9", "N": "2/5"},
{"Temperature": "Mild", "Y": "4/9", "N": "2/5"},
{"Temperature": "Cool", "Y": "3/9", "N": "1/5"}
]
humidity_data = [
{"Humidity": "High", "Y": "3/9", "N": "4/5"},
{"Humidity": "Normal", "Y": "6/9", "N": "1/5"}
]
wind_data = [
{"Wind": "Strong", "Y": "3/9", "N": "3/5"},
{"Wind": "Weak", "Y": "6/9", "N": "2/5"}
]
return (
humidity_data,
no_count,
outlook_data,
summary_data,
summary_table,
temp_data,
total,
wind_data,
yes_count,
)
@app.cell(hide_code=True)
def _(mo):
# accordion with solution (step-by-step)
solution_accordion = {
"step-by-step solution (click to expand)": mo.md(r"""
#### step 1: gather probabilities
from our tables:
**prior probabilities:**
- $P(Yes) = 9/14 = 0.64$
- $P(No) = 5/14 = 0.36$
**conditional probabilities:**
- $P(Outlook=Sunny|Yes) = 2/9$
- $P(Outlook=Sunny|No) = 3/5$
- $P(Temperature=Cool|Yes) = 3/9$
- $P(Temperature=Cool|No) = 1/5$
- $P(Humidity=High|Yes) = 3/9$
- $P(Humidity=High|No) = 4/5$
- $P(Wind=Strong|Yes) = 3/9$
- $P(Wind=Strong|No) = 3/5$
#### step 2: calculate for yes
$P(Yes) \times P(Sunny|Yes) \times P(Cool|Yes) \times P(High|Yes) \times P(Strong|Yes)$
$= \frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9}$
$= \frac{9}{14} \times \frac{2 \times 3 \times 3 \times 3}{9^4}$
$= \frac{9}{14} \times \frac{54}{6561}$
$= \frac{9 \times 54}{14 \times 6561}$
$= \frac{486}{91854}$
$= 0.0053$
#### step 3: calculate for no
$P(No) \times P(Sunny|No) \times P(Cool|No) \times P(High|No) \times P(Strong|No)$
$= \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5}$
$= \frac{5}{14} \times \frac{3 \times 1 \times 4 \times 3}{5^4}$
$= \frac{5}{14} \times \frac{36}{625}$
$= \frac{5 \times 36}{14 \times 625}$
$= \frac{180}{8750}$
$= 0.0206$
#### step 4: normalize
sum of probabilities: $0.0053 + 0.0206 = 0.0259$
normalizing:
- $P(Yes|evidence) = \frac{0.0053}{0.0259} = 0.205$ (20.5%)
- $P(No|evidence) = \frac{0.0206}{0.0259} = 0.795$ (79.5%)
#### step 5: predict
since $P(No|evidence) > P(Yes|evidence)$, prediction: **No**
person would **not play tennis** under these conditions.
""")
}
return (solution_accordion,)
@app.cell(hide_code=True)
def create_gaussian_controls(mo):
# sliders for controlling viz parameters
class_sep_slider = mo.ui.slider(1.0, 3.0, value=1.5, label="Class Separation")
noise_slider = mo.ui.slider(0.1, 0.5, step=0.1, value=0.1, label="Noise (reduces class separation)")
n_samples_slider = mo.ui.slider(50, 200, value=100, step=10, label="Number of Samples")
# Create a run button to regenerate data
regenerate_button = mo.ui.run_button(label="Regenerate Data", kind="success")
# stack controls vertically
controls = mo.vstack([
mo.md("### visualization controls"),
class_sep_slider,
noise_slider,
n_samples_slider,
regenerate_button
])
return (
class_sep_slider,
controls,
n_samples_slider,
noise_slider,
regenerate_button,
)
if __name__ == "__main__":
app.run()
|