marimo-learn / optimization /04_quadratic_program.py
Akshay Agrawal
optimization: move import marimo as mo to top of notebook
8646a4e
raw
history blame
7.53 kB
# /// script
# requires-python = ">=3.13"
# dependencies = [
# "cvxpy==1.6.0",
# "marimo",
# "matplotlib==3.10.0",
# "numpy==2.2.2",
# "wigglystuff==0.1.9",
# ]
# ///
import marimo
__generated_with = "0.11.0"
app = marimo.App()
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Quadratic program
A quadratic program is an optimization problem with a quadratic objective and
affine equality and inequality constraints. A common standard form is the
following:
\[
\begin{array}{ll}
\text{minimize} & (1/2)x^TPx + q^Tx\\
\text{subject to} & Gx \leq h \\
& Ax = b.
\end{array}
\]
Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise.
**Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time.
**An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem
\[
\begin{array}{ll}
\text{minimize} & (1/2)x^T\Sigma x - r^Tx\\
\text{subject to} & x \geq 0 \\
& \mathbf{1}^Tx = 1,
\end{array}
\]
to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return.
When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Example
In this example, we use CVXPY to construct and solve a quadratic program.
"""
)
return
@app.cell
def _():
import cvxpy as cp
import numpy as np
return cp, np
@app.cell(hide_code=True)
def _(mo):
mo.md("""First we generate synthetic data. In this problem, we don't include equality constraints, only inequality.""")
return
@app.cell
def _(np):
m = 4
n = 2
np.random.seed(1)
q = np.random.randn(n)
G = np.random.randn(m, n)
h = G @ np.random.randn(n)
return G, h, m, n, q
@app.cell(hide_code=True)
def _(mo, np):
import wigglystuff
P_widget = mo.ui.anywidget(
wigglystuff.Matrix(np.array([[4.0, -1.4], [-1.4, 4]]), step=0.1)
)
mo.md(
f"""
The quadratic form $P$ is equal to the symmetrized version of this
matrix:
{P_widget.center()}
"""
)
return P_widget, wigglystuff
@app.cell
def _(P_widget, np):
P = 0.5 * (np.array(P_widget.matrix) + np.array(P_widget.matrix).T)
return (P,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""")
return
@app.cell
def _(G, P, cp, h, n, q):
x = cp.Variable(n)
problem = cp.Problem(
cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x),
[G @ x <= h],
)
_ = problem.solve()
return problem, x
@app.cell(hide_code=True)
def _(mo, problem, x):
mo.md(
f"""
The optimal value is {problem.value:.04f}.
A solution $x$ is {mo.as_html(list(x.value))}
A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))}
"""
)
return
@app.cell
def _(G, P, h, plot_contours, q, x):
plot_contours(P, G, h, q, x.value)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
In this plot, the gray shaded region is the feasible region (points satisfying the inequality), and the ellipses are level curves of the quadratic form.
**🌊 Try it!** Try changing the entries of $P$ above with your mouse. How do the
level curves and the optimal value of $x$ change? Can you explain what you see?
"""
)
return
@app.cell(hide_code=True)
def _(P, mo):
mo.md(
rf"""
The above contour lines were generated with
\[
P= \begin{{bmatrix}}
{P[0, 0]:.01f} & {P[0, 1]:.01f} \\
{P[1, 0]:.01f} & {P[1, 1]:.01f} \\
\end{{bmatrix}}
\]
"""
)
return
@app.cell(hide_code=True)
def _(np):
def plot_contours(P, G, h, q, x_star):
import matplotlib.pyplot as plt
# Create a grid of x and y values.
x = np.linspace(-5, 5, 400)
y = np.linspace(-5, 5, 400)
X, Y = np.meshgrid(x, y)
# Compute the quadratic form Q(x, y) = a*x^2 + 2*b*x*y + c*y^2.
# Here, a = P[0,0], b = P[0,1] (and P[1,0]), c = P[1,1]
Z = (
0.5 * (P[0, 0] * X**2 + 2 * P[0, 1] * X * Y + P[1, 1] * Y**2)
+ q[0] * X
+ q[1] * Y
)
# --- Evaluate the constraints on the grid ---
# We stack X and Y to get a list of (x,y) points.
points = np.vstack([X.ravel(), Y.ravel()]).T
# Start with all points feasible
feasible = np.ones(points.shape[0], dtype=bool)
# Apply the inequality constraints Gx <= h.
# Each row of G and corresponding h defines a condition.
for i in range(G.shape[0]):
# For a given point x, the condition is: G[i,0]*x + G[i,1]*y <= h[i]
feasible &= points.dot(G[i]) <= h[i] + 1e-8 # small tolerance
# Reshape the boolean mask back to grid shape.
feasible_grid = feasible.reshape(X.shape)
# --- Plot the feasible region and contour lines---
plt.figure(figsize=(8, 6))
# Use contourf to fill the region where feasible_grid is True.
# We define two levels, so that points that are True (feasible) get one
# color.
plt.contourf(
X,
Y,
feasible_grid,
levels=[-0.5, 0.5, 1.5],
colors=["white", "gray"],
alpha=0.5,
)
contours = plt.contour(X, Y, Z, levels=10, cmap="viridis")
plt.clabel(contours, inline=True, fontsize=8)
plt.title("Feasible region and level curves")
plt.xlabel("$x_1$")
plt.ylabel("$y_2$")
# plt.colorbar(contours, label='Q(x, y)')
ax = plt.gca()
# Optionally, mark and label the point x_star.
ax.plot(x_star[0], x_star[1], "ko", markersize=5)
ax.text(
x_star[0],
x_star[1],
r"$\mathbf{x}^\star$",
color="black",
fontsize=12,
verticalalignment="bottom",
horizontalalignment="right",
)
return plt.gca()
return (plot_contours,)
if __name__ == "__main__":
app.run()