Spaces:
Sleeping
Sleeping
# /// script | |
# requires-python = ">=3.13" | |
# dependencies = [ | |
# "cvxpy==1.6.0", | |
# "marimo", | |
# "matplotlib==3.10.0", | |
# "numpy==2.2.2", | |
# "scipy==1.15.1", | |
# "wigglystuff==0.1.9", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.11.2" | |
app = marimo.App() | |
def _(): | |
import marimo as mo | |
return (mo,) | |
def _(mo): | |
mo.md(r"""# Portfolio optimization""") | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
In this example we show how to use CVXPY to design a financial portfolio; this is called _portfolio optimization_. | |
In portfolio optimization we have some amount of money to invest in any of $n$ different assets. | |
We choose what fraction $w_i$ of our money to invest in each asset $i$, $i=1, \ldots, n$. The goal is to maximize return of the portfolio while minimizing risk. | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Asset returns and risk | |
We will only model investments held for one period. The initial prices are $p_i > 0$. The end of period prices are $p_i^+ >0$. The asset (fractional) returns are $r_i = (p_i^+-p_i)/p_i$. The portfolio (fractional) return is $R = r^Tw$. | |
A common model is that $r$ is a random variable with mean ${\bf E}r = \mu$ and covariance ${\bf E{(r-\mu)(r-\mu)^T}} = \Sigma$. | |
It follows that $R$ is a random variable with ${\bf E}R = \mu^T w$ and ${\bf var}(R) = w^T\Sigma w$. In real-world applications, $\mu$ and $\Sigma$ are estimated from data and models, and $w$ is chosen using a library like CVXPY. | |
${\bf E}R$ is the (mean) *return* of the portfolio. ${\bf var}(R)$ is the *risk* of the portfolio. Portfolio optimization has two competing objectives: high return and low risk. | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Classical (Markowitz) portfolio optimization | |
Classical (Markowitz) portfolio optimization solves the optimization problem | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
$$ | |
\begin{array}{ll} \text{maximize} & \mu^T w - \gamma w^T\Sigma w\\ | |
\text{subject to} & {\bf 1}^T w = 1, w \geq 0, | |
\end{array} | |
$$ | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
where $w \in {\bf R}^n$ is the optimization variable and $\gamma >0$ is a constant called the *risk aversion parameter*. The constraint $\mathbf{1}^Tw = 1$ says the portfolio weight vector must sum to 1, and $w \geq 0$ says that we can't invest a negative amount into any asset. | |
The objective $\mu^Tw - \gamma w^T\Sigma w$ is the *risk-adjusted return*. Varying $\gamma$ gives the optimal *risk-return trade-off*. | |
We can get the same risk-return trade-off by fixing return and minimizing risk. | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Example | |
In the following code we compute and plot the optimal risk-return trade-off for $10$ assets. First we generate random problem data $\mu$ and $\Sigma$. | |
""" | |
) | |
return | |
def _(): | |
import numpy as np | |
return (np,) | |
def _(mo, np): | |
import wigglystuff | |
mu_widget = mo.ui.anywidget( | |
wigglystuff.Matrix( | |
np.array( | |
[ | |
[1.6], | |
[0.6], | |
[0.5], | |
[1.1], | |
[0.9], | |
[2.3], | |
[1.7], | |
[0.7], | |
[0.9], | |
[0.3], | |
] | |
) | |
) | |
) | |
mo.md( | |
rf""" | |
The value of $\mu$ is | |
{mu_widget.center()} | |
_Try changing the entries of $\mu$ and see how the plots below change._ | |
""" | |
) | |
return mu_widget, wigglystuff | |
def _(mu_widget, np): | |
np.random.seed(1) | |
n = 10 | |
mu = np.array(mu_widget.matrix) | |
Sigma = np.random.randn(n, n) | |
Sigma = Sigma.T.dot(Sigma) | |
return Sigma, mu, n | |
def _(mo): | |
mo.md("""Next, we solve the problem for 100 different values of $\gamma$""") | |
return | |
def _(Sigma, mu, n): | |
import cvxpy as cp | |
w = cp.Variable(n) | |
gamma = cp.Parameter(nonneg=True) | |
ret = mu.T @ w | |
risk = cp.quad_form(w, Sigma) | |
prob = cp.Problem(cp.Maximize(ret - gamma * risk), [cp.sum(w) == 1, w >= 0]) | |
return cp, gamma, prob, ret, risk, w | |
def _(cp, gamma, np, prob, ret, risk): | |
_SAMPLES = 100 | |
risk_data = np.zeros(_SAMPLES) | |
ret_data = np.zeros(_SAMPLES) | |
gamma_vals = np.logspace(-2, 3, num=_SAMPLES) | |
for _i in range(_SAMPLES): | |
gamma.value = gamma_vals[_i] | |
prob.solve() | |
risk_data[_i] = cp.sqrt(risk).value | |
ret_data[_i] = ret.value | |
return gamma_vals, ret_data, risk_data | |
def _(mo): | |
mo.md("""Plotted below are the risk return tradeoffs for two values of $\gamma$ (blue squares), and the risk return tradeoffs for investing fully in each asset (red circles)""") | |
return | |
def _(Sigma, cp, gamma_vals, mu, n, ret_data, risk_data): | |
import matplotlib.pyplot as plt | |
markers_on = [29, 40] | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
plt.plot(risk_data, ret_data, "g-") | |
for marker in markers_on: | |
plt.plot(risk_data[marker], ret_data[marker], "bs") | |
ax.annotate( | |
"$\\gamma = %.2f$" % gamma_vals[marker], | |
xy=(risk_data[marker] + 0.08, ret_data[marker] - 0.03), | |
) | |
for _i in range(n): | |
plt.plot(cp.sqrt(Sigma[_i, _i]).value, mu[_i], "ro") | |
plt.xlabel("Standard deviation") | |
plt.ylabel("Return") | |
plt.show() | |
return ax, fig, marker, markers_on, plt | |
def _(mo): | |
mo.md( | |
r""" | |
We plot below the return distributions for the two risk aversion values marked on the trade-off curve. | |
Notice that the probability of a loss is near 0 for the low risk value and far above 0 for the high risk value. | |
""" | |
) | |
return | |
def _(gamma, gamma_vals, markers_on, np, plt, prob, ret, risk): | |
import scipy.stats as spstats | |
plt.figure() | |
for midx, _idx in enumerate(markers_on): | |
gamma.value = gamma_vals[_idx] | |
prob.solve() | |
x = np.linspace(-2, 5, 1000) | |
plt.plot( | |
x, | |
spstats.norm.pdf(x, ret.value, risk.value), | |
label="$\\gamma = %.2f$" % gamma.value, | |
) | |
plt.xlabel("Return") | |
plt.ylabel("Density") | |
plt.legend(loc="upper right") | |
plt.show() | |
return midx, spstats, x | |
if __name__ == "__main__": | |
app.run() | |