marimo-learn / polars /14_user_defined_functions.py
petergy's picture
Polars: Chapter 14 - User-Defined Functions
33b7a62
raw
history blame
32.8 kB
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "altair==5.5.0",
# "beautifulsoup4==4.13.3",
# "httpx==0.28.1",
# "marimo",
# "nest-asyncio==1.6.0",
# "numba==0.61.0",
# "numpy==2.1.3",
# "polars==1.24.0",
# ]
# ///
import marimo
__generated_with = "0.11.17"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# User-Defined Functions
_By [Péter Ferenc Gyarmati](http://github.com/peter-gy)_.
Throughout the previous chapters, you've seen how Polars provides a comprehensive set of built-in expressions for flexible data transformation. But what happens when you need something *more*? Perhaps your project has unique requirements, or you need to integrate functionality from an external Python library. This is where User-Defined Functions (UDFs) come into play, allowing you to extend Polars with your own custom logic.
In this chapter, we'll weigh the performance trade-offs of UDFs, pinpoint situations where they're truly beneficial, and explore different ways to effectively incorporate them into your Polars workflows. We'll walk through a complete, practical example.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## ⚖️ The Cost of UDFs
> Performance vs. Flexibility
Polars' built-in expressions are highly optimized for speed and parallel processing. User-defined functions (UDFs), however, introduce a significant performance overhead because they rely on standard Python code, which often runs in a single thread and bypasses Polars' logical optimizations. Therefore, always prioritize native Polars operations *whenever possible*.
However, UDFs become inevitable when you need to:
- **Integrate external libraries:** Use functionality not directly available in Polars.
- **Implement custom logic:** Handle complex transformations that can't be easily expressed with Polars' built-in functions.
Let's dive into a real-world project where UDFs were the only way to get the job done, demonstrating a scenario where native Polars expressions simply weren't sufficient.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 📊 Project Overview
> Scraping and Analyzing Observable Notebook Statistics
If you're into data visualization, you've probably seen [D3.js](https://d3js.org/) and [Observable Plot](https://observablehq.com/plot/). Both have extensive galleries showcasing amazing visualizations. Each gallery item is a standalone [Observable notebook](https://observablehq.com/documentation/notebooks/), with metrics like stars, comments, and forks – indicators of popularity. But getting and analyzing these statistics directly isn't straightforward. We'll need to scrape the web.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.hstack(
[
mo.image(
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_d3-gallery.png?0",
width=600,
caption="Screenshot of https://observablehq.com/@d3/gallery",
),
mo.image(
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_plot-gallery.png?0",
width=600,
caption="Screenshot of https://observablehq.com/@observablehq/plot-gallery",
),
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Our goal is to use Polars UDFs to fetch the HTML content of these gallery pages. Then, we'll use the `BeautifulSoup` Python library to parse the HTML and extract the relevant metadata. After some data wrangling with native Polars expressions, we'll have a DataFrame listing each visualization notebook. Then, we'll use another UDF to retrieve the number of likes, forks, and comments for each notebook. Finally, we will create our own high-performance UDF to implement a custom notebook ranking scheme. This will involve multiple steps, showcasing different UDF approaches.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.mermaid('''
graph LR;
url_df --> |"UDF: Fetch HTML"| html_df
html_df --> |"UDF: Parse with BeautifulSoup"| parsed_html_df
parsed_html_df --> |"Native Polars: Extract Data"| notebooks_df
notebooks_df --> |"UDF: Get Notebook Stats"| notebook_stats_df
notebook_stats_df --> |"Numba UDF: Compute Popularity"| notebook_popularity_df
''')
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Our starting point, `url_df`, is a simple DataFrame with a single `url` column containing the URLs of the D3 and Observable Plot gallery notebooks.""")
return
@app.cell(hide_code=True)
def _(pl):
url_df = pl.from_dict(
{
"url": [
"https://observablehq.com/@d3/gallery",
"https://observablehq.com/@observablehq/plot-gallery",
]
}
)
url_df
return (url_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🔂 Element-Wise UDFs
> Processing Value by Value
The most common way to use UDFs is to apply them element-wise. This means our custom function will execute for *each individual row* in a specified column. Our first task is to fetch the HTML content for each URL in `url_df`.
We'll define a Python function that takes a `url` (a string) as input, uses the `httpx` library (an HTTP client) to fetch the content, and returns the HTML as a string. We then integrate this function into Polars using the [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) expression.
You'll notice we have to explicitly specify the `return_dtype`. This is *crucial*. Polars doesn't automatically know what our custom function will return. We're responsible for defining the function's logic and, therefore, its output type. By providing the `return_dtype`, we help Polars maintain its internal representation of the DataFrame's schema, enabling query optimization. Think of it as giving Polars a "heads-up" about the data type it should expect.
"""
)
return
@app.cell(hide_code=True)
def _(httpx, pl, url_df):
html_df = url_df.with_columns(
html=pl.col("url").map_elements(
lambda url: httpx.get(url).text,
return_dtype=pl.String,
)
)
html_df
return (html_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Now, `html_df` holds the HTML for each URL. We need to parse it. Again, a UDF is the way to go. Parsing HTML with native Polars expressions would be a nightmare! Instead, we'll use the [`beautifulsoup4`](https://pypi.org/project/beautifulsoup4/) library, a standard tool for this.
These Observable pages are built with [Next.js](https://nextjs.org/), which helpfully serializes page properties as JSON within the HTML. This simplifies our UDF: we'll extract the raw JSON from the `<script id="__NEXT_DATA__" type="application/json">` tag. We'll use [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) again. For clarity, we'll define this UDF as a named function, `extract_nextjs_data`, since it's a bit more complex than a simple HTTP request.
"""
)
return
@app.cell(hide_code=True)
def _(BeautifulSoup):
def extract_nextjs_data(html: str) -> str:
soup = BeautifulSoup(html, "html.parser")
script_tag = soup.find("script", id="__NEXT_DATA__")
return script_tag.text
return (extract_nextjs_data,)
@app.cell(hide_code=True)
def _(extract_nextjs_data, html_df, pl):
parsed_html_df = html_df.select(
"url",
next_data=pl.col("html").map_elements(
extract_nextjs_data,
return_dtype=pl.String,
),
)
parsed_html_df
return (parsed_html_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""With some data wrangling of the raw JSON (using *native* Polars expressions!), we get `notebooks_df`, containing the metadata for each notebook.""")
return
@app.cell(hide_code=True)
def _(parsed_html_df, pl):
notebooks_df = (
parsed_html_df.select(
"url",
# We extract the content of every cell present in the gallery notebooks
cell=pl.col("next_data")
.str.json_path_match("$.props.pageProps.initialNotebook.nodes")
.str.json_decode()
.list.eval(pl.element().struct.field("value")),
)
# We want one row per cell
.explode("cell")
# Only keep categorized notebook listing cells starting with H3
.filter(pl.col("cell").str.starts_with("### "))
# Split up the cells into [heading, description, config] sections
.with_columns(pl.col("cell").str.split("\n\n"))
.select(
gallery_url="url",
# Text after the '### ' heading, ignore '<!--' comments'
category=pl.col("cell").list.get(0).str.extract(r"###\s+(.*?)(?:\s+<!--.*?-->|$)"),
# Paragraph after heading
description=pl.col("cell")
.list.get(1)
.str.strip_chars(" ")
.str.replace_all("](/", "](https://observablehq.com/", literal=True),
# Parsed notebook config from ${preview([{...}])}
notebooks=pl.col("cell")
.list.get(2)
.str.strip_prefix("${previews([")
.str.strip_suffix("]})}")
.str.strip_chars(" \n")
.str.split("},")
# Simple regex-based attribute extraction from JS/JSON objects like
# ```js
# {
# path: "@d3/spilhaus-shoreline-map",
# "thumbnail": "66a87355e205d820...",
# title: "Spilhaus shoreline map",
# "author": "D3"
# }
# ```
.list.eval(
pl.struct(
*(
pl.element()
.str.extract(f'(?:"{key}"|{key})\s*:\s*"([^"]*)"')
.alias(key)
for key in ["path", "thumbnail", "title"]
)
)
),
)
.explode("notebooks")
.unnest("notebooks")
.filter(pl.col("path").is_not_null())
# Final projection to end up with directly usable values
.select(
pl.concat_str(
[
pl.lit("https://static.observableusercontent.com/thumbnail/"),
"thumbnail",
pl.lit(".jpg"),
],
).alias("notebook_thumbnail_src"),
"category",
"title",
"description",
pl.concat_str(
[pl.lit("https://observablehq.com"), "path"], separator="/"
).alias("notebook_url"),
)
)
notebooks_df
return (notebooks_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 📦 Batch-Wise UDFs
> Processing Entire Series
`map_elements` calls the UDF for *each row*. Fine for our tiny, two-rows-tall `url_df`. But `notebooks_df` has almost 400 rows! Individual HTTP requests for each would be painfully slow.
We want stats for each notebook in `notebooks_df`. To avoid sequential requests, we'll use Polars' [`map_batches`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_batches.html). This lets us process an *entire Series* (a column) at once.
Our UDF, `fetch_html_batch`, will take a *Series* of URLs and use `asyncio` to make concurrent requests – a huge performance boost.
"""
)
return
@app.cell(hide_code=True)
def _(Iterable, asyncio, httpx, mo):
async def _fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
async with httpx.AsyncClient(timeout=15) as client:
res = await asyncio.gather(*(client.get(url) for url in urls))
return tuple((r.text for r in res))
@mo.cache
def fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
return asyncio.run(_fetch_html_batch(urls))
return (fetch_html_batch,)
@app.cell(hide_code=True)
def _(mo):
mo.callout(
mo.md("""
Since `fetch_html_batch` is a pure Python function and performs multiple network requests, it's a good candidate for caching. We use [`mo.cache`](https://docs.marimo.io/api/caching/#marimo.cache) to avoid redundant requests to the same URL. This is a simple way to improve performance without modifying the core logic.
"""
),
kind="info",
)
return
@app.cell(hide_code=True)
def _(mo, notebooks_df):
category = mo.ui.dropdown(
notebooks_df.sort("category").get_column("category"),
value="Maps",
)
return (category,)
@app.cell(hide_code=True)
def _(category, extract_nextjs_data, fetch_html_batch, notebooks_df, pl):
notebook_stats_df = (
# Setting filter upstream to limit number of concurrent HTTP requests
notebooks_df.filter(category=category.value)
.with_columns(
notebook_html=pl.col("notebook_url")
.map_batches(fetch_html_batch, return_dtype=pl.List(pl.String))
.explode()
)
.with_columns(
notebook_data=pl.col("notebook_html")
.map_elements(
extract_nextjs_data,
return_dtype=pl.String,
)
.str.json_path_match("$.props.pageProps.initialNotebook")
.str.json_decode()
)
.drop("notebook_html")
.with_columns(
*[
pl.col("notebook_data").struct.field(key).alias(key)
for key in ["likes", "forks", "comments", "license"]
]
)
.drop("notebook_data")
.with_columns(pl.col("comments").list.len())
.select(
pl.exclude("description", "notebook_url"),
"description",
"notebook_url",
)
.sort("likes", descending=True)
)
return (notebook_stats_df,)
@app.cell(hide_code=True)
def _(mo, notebook_stats_df):
notebooks = mo.ui.table(notebook_stats_df, selection='single', initial_selection=[2], page_size=5)
notebook_height = mo.ui.slider(start=400, stop=2000, value=825, step=25, show_value=True, label='Notebook Height')
return notebook_height, notebooks
@app.cell(hide_code=True)
def _():
def nb_iframe(notebook_url: str, height=825) -> str:
embed_url = notebook_url.replace(
"https://observablehq.com", "https://observablehq.com/embed"
)
return f'<iframe width="100%" height="{height}" frameborder="0" src="{embed_url}?cell=*"></iframe>'
return (nb_iframe,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now that we have access to notebook-level statistics, we can rank the visualizations by the number of likes they received & display them interactively.""")
return
@app.cell(hide_code=True)
def _(mo):
mo.callout("💡 Explore the visualizations by paging through the table below and selecting any of its rows.")
return
@app.cell(hide_code=True)
def _(category, mo, nb_iframe, notebook_height, notebooks):
notebook = notebooks.value.to_dicts()[0]
mo.vstack(
[
mo.hstack([category, notebook_height]),
notebooks,
mo.md(f"{notebook['description']}"),
mo.md('---'),
mo.md(nb_iframe(notebook["notebook_url"], notebook_height.value)),
]
)
return (notebook,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## ⚙️ Row-Wise UDFs
> Accessing All Columns at Once
Sometimes, you need to work with *all* columns of a row at once. This is where [`map_rows`](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.map_rows.html) comes in. It operates directly on the DataFrame, passing each row to your UDF *as a tuple*.
Below, `create_notebook_summary` takes a row from `notebook_stats_df` (as a tuple) and returns a formatted Markdown string summarizing the notebook's key stats. We're essentially reducing the DataFrame to a single column. While this *could* be done with native Polars expressions, it would be much more cumbersome. This example demonstrates a case where a row-wise UDF simplifies the code, even if the underlying operation isn't inherently complex.
"""
)
return
@app.cell(hide_code=True)
def _():
def create_notebook_summary(row: tuple) -> str:
(
thumbnail_src,
category,
title,
likes,
forks,
comments,
license,
description,
notebook_url,
) = row
return (
f"""
### [{title}]({notebook_url})
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 12px; margin: 12px 0;">
<div>⭐ <strong>Likes:</strong> {likes}</div>
<div>↗️ <strong>Forks:</strong> {forks}</div>
<div>💬 <strong>Comments:</strong> {comments}</div>
<div>⚖️ <strong>License:</strong> {license}</div>
</div>
<a href="{notebook_url}" target="_blank">
<img src="{thumbnail_src}" style="height: 300px;" />
<a/>
""".strip('\n')
)
return (create_notebook_summary,)
@app.cell(hide_code=True)
def _(create_notebook_summary, notebook_stats_df, pl):
notebook_summary_df = notebook_stats_df.map_rows(
create_notebook_summary,
return_dtype=pl.String,
).rename({"map": "summary"})
notebook_summary_df.head(1)
return (notebook_summary_df,)
@app.cell(hide_code=True)
def _(mo):
mo.callout("💡 You can explore individual notebook statistics through the carousel. Discover the visualization's source code by clicking the notebook title or the thumbnail.")
return
@app.cell(hide_code=True)
def _(mo, notebook_summary_df):
mo.carousel(
[
mo.lazy(mo.md(summary))
for summary in notebook_summary_df.get_column("summary")
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 🚀 Higher-performance UDFs
> Leveraging Numba to Make Python Fast
Python code doesn't *always* mean slow code. While UDFs *often* introduce performance overhead, there are exceptions. NumPy's universal functions ([`ufuncs`](https://numpy.org/doc/stable/reference/ufuncs.html)) and generalized universal functions ([`gufuncs`](https://numpy.org/neps/nep-0005-generalized-ufuncs.html)) provide high-performance operations on NumPy arrays, thanks to low-level implementations.
But NumPy's built-in functions are predefined. We can't easily use them for *custom* logic. Enter [`numba`](https://numba.pydata.org/). Numba is a just-in-time (JIT) compiler that translates Python functions into optimized machine code *at runtime*. It provides decorators like [`numba.guvectorize`](https://numba.readthedocs.io/en/stable/user/vectorize.html#the-guvectorize-decorator) that let us create our *own* high-performance `gufuncs` – *without* writing low-level code!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Let's create a custom popularity metric to rank notebooks, considering likes, forks, *and* comments (not just likes). We'll define `weighted_popularity_numba`, decorated with `@numba.guvectorize`. The decorator arguments specify that we're taking three integer vectors of length `n` and returning a float vector of length `n`.
The weighted popularity score for each notebook is calculated using the following formula:
$$
\begin{equation}
\text{score}_i = w_l \cdot l_i^{f} + w_f \cdot f_i^{f} + w_c \cdot c_i^{f}
\end{equation}
$$
with:
"""
)
return
@app.cell(hide_code=True)
def _(mo, non_linear_factor, weight_comments, weight_forks, weight_likes):
mo.md(rf"""
| Symbol | Description |
|--------|-------------|
| $\text{{score}}_i$ | Popularity score for the *i*-th notebook |
| $w_l = {weight_likes.value}$ | Weight for likes |
| $l_i$ | Number of likes for the *i*-th notebook |
| $w_f = {weight_forks.value}$ | Weight for forks |
| $f_i$ | Number of forks for the *i*-th notebook |
| $w_c = {weight_comments.value}$ | Weight for comments |
| $c_i$ | Number of comments for the *i*-th notebook |
| $f = {non_linear_factor.value}$ | Non-linear factor (exponent) |
""")
return
@app.cell(hide_code=True)
def _(mo):
weight_likes = mo.ui.slider(
start=0.1,
stop=1,
value=0.5,
step=0.1,
show_value=True,
label="⭐ Weight for Likes",
)
weight_forks = mo.ui.slider(
start=0.1,
stop=1,
value=0.3,
step=0.1,
show_value=True,
label="↗️ Weight for Forks",
)
weight_comments = mo.ui.slider(
start=0.1,
stop=1,
value=0.5,
step=0.1,
show_value=True,
label="💬 Weight for Comments",
)
non_linear_factor = mo.ui.slider(
start=1,
stop=2,
value=1.2,
step=0.1,
show_value=True,
label="🎢 Non-Linear Factor",
)
return non_linear_factor, weight_comments, weight_forks, weight_likes
@app.cell(hide_code=True)
def _(
non_linear_factor,
np,
numba,
weight_comments,
weight_forks,
weight_likes,
):
w_l = weight_likes.value
w_f = weight_forks.value
w_c = weight_comments.value
nlf = non_linear_factor.value
@numba.guvectorize(
[(numba.int64[:], numba.int64[:], numba.int64[:], numba.float64[:])],
"(n), (n), (n) -> (n)",
)
def weighted_popularity_numba(
likes: np.ndarray,
forks: np.ndarray,
comments: np.ndarray,
out: np.ndarray,
):
for i in range(likes.shape[0]):
out[i] = (
w_l * (likes[i] ** nlf)
+ w_f * (forks[i] ** nlf)
+ w_c * (comments[i] ** nlf)
)
return nlf, w_c, w_f, w_l, weighted_popularity_numba
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We apply our JIT-compiled UDF using `map_batches`, as before. The key is that we're passing entire columns directly to `weighted_popularity_numba`. Polars and Numba handle the conversion to NumPy arrays behind the scenes. This direct integration is a major benefit of using `guvectorize`.""")
return
@app.cell(hide_code=True)
def _(notebook_stats_df, pl, weighted_popularity_numba):
notebook_popularity_df = (
notebook_stats_df.select(
pl.col("notebook_thumbnail_src").alias("thumbnail"),
"title",
"likes",
"forks",
"comments",
popularity=pl.struct(["likes", "forks", "comments"]).map_batches(
lambda obj: weighted_popularity_numba(
obj.struct.field("likes"),
obj.struct.field("forks"),
obj.struct.field("comments"),
),
return_dtype=pl.Float64,
),
url="notebook_url",
)
)
return (notebook_popularity_df,)
@app.cell(hide_code=True)
def _(mo):
mo.callout("💡 Adjust the hyperparameters of the popularity ranking UDF. How do the weights and non-linear factor affect the notebook rankings?")
return
@app.cell(hide_code=True)
def _(
mo,
non_linear_factor,
notebook_popularity_df,
weight_comments,
weight_forks,
weight_likes,
):
mo.vstack(
[
mo.hstack([weight_likes, weight_forks]),
mo.hstack([weight_comments, non_linear_factor]),
notebook_popularity_df,
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""As the slope chart below demonstrates, this new ranking strategy significantly changes the notebook order, as it considers forks and comments, not just likes.""")
return
@app.cell(hide_code=True)
def _(alt, notebook_popularity_df, pl):
notebook_ranks_df = (
notebook_popularity_df.sort("likes", descending=True)
.with_row_index("rank_by_likes")
.with_columns(pl.col("rank_by_likes") + 1)
.sort("popularity", descending=True)
.with_row_index("rank_by_popularity")
.with_columns(pl.col("rank_by_popularity") + 1)
.select("thumbnail", "title", "rank_by_popularity", "rank_by_likes")
.unpivot(
["rank_by_popularity", "rank_by_likes"],
index="title",
variable_name="strategy",
value_name="rank",
)
)
# Slope chart to visualize rank differences by strategy
lines = notebook_ranks_df.plot.line(
x="strategy:O",
y="rank:Q",
color="title:N",
)
points = notebook_ranks_df.plot.point(
x="strategy:O",
y="rank:Q",
color=alt.Color("title:N", legend=None),
fill="title:N",
)
(points + lines).properties(width=400)
return lines, notebook_ranks_df, points
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## ⏱️ Quantifying the Overhead
> UDF Performance Comparison
To truly understand the performance implications of using UDFs, let's conduct a benchmark. We'll create a DataFrame with random numbers and perform the same numerical operation using four different methods:
1. **Native Polars:** Using Polars' built-in expressions.
2. **`map_elements`:** Applying a Python function element-wise.
3. **`map_batches`:** **Applying** a Python function to the entire Series.
4. **`map_batches` with Numba:** Applying a JIT-compiled function to batches, similar to a generalized universal function.
We'll use a simple, but non-trivial, calculation: `result = (x * 2.5 + 5) / (x + 1)`. This involves multiplication, addition, and division, giving us a realistic representation of a common numerical operation. We'll use the `timeit` module, to accurately measure execution times over multiple trials.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.callout("💡 Tweak the benchmark parameters to explore how execution times change with different sample sizes and trial counts. Do you notice anything surprising as you decrease the number of samples?")
return
@app.cell(hide_code=True)
def _(benchmark_plot, mo, num_samples, num_trials):
mo.vstack(
[
mo.hstack([num_samples, num_trials]),
mo.md(
f"""---
Performance comparison over **{num_trials.value:,} trials** with **{num_samples.value:,} samples**.
> Lower execution times are better.
"""
),
benchmark_plot,
]
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
As anticipated, the `Batch-Wise UDF (Python)` and `Element-Wise UDF` exhibit significantly worse performance, essentially acting as pure-Python for-each loops.
However, when Python serves as an interface to lower-level, high-performance libraries, we observe substantial improvements. The `Batch-Wise UDF (NumPy)` lags behind both `Batch-Wise UDF (Numba)` and `Native Polars`, but it still represents a considerable improvement over pure-Python UDFs due to its vectorized computations.
Numba's Just-In-Time (JIT) compilation delivers a dramatic performance boost, achieving speeds comparable to native Polars expressions. This demonstrates that UDFs, particularly when combined with tools like Numba, don't inevitably lead to bottlenecks in numerical computations.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
num_samples = mo.ui.slider(
start=1_000,
stop=1_000_000,
value=250_000,
step=1000,
show_value=True,
debounce=True,
label="Number of Samples",
)
num_trials = mo.ui.slider(
start=50,
stop=1_000,
value=100,
step=50,
show_value=True,
debounce=True,
label="Number of Trials",
)
return num_samples, num_trials
@app.cell(hide_code=True)
def _(np, num_samples, pl):
rng = np.random.default_rng(42)
sample_df = pl.from_dict({"x": rng.random(num_samples.value)})
return rng, sample_df
@app.cell(hide_code=True)
def _(np, num_trials, numba, pl, sample_df, timeit):
def run_native():
sample_df.with_columns(
result_native=(pl.col("x") * 2.5 + 5) / (pl.col("x") + 1)
)
def _calculate_elementwise(x: float) -> float:
return (x * 2.5 + 5) / (x + 1)
def run_map_elements():
sample_df.with_columns(
result_map_elements=pl.col("x").map_elements(
_calculate_elementwise,
return_dtype=pl.Float64,
)
)
def _calculate_batchwise_numpy(x_series: pl.Series) -> pl.Series:
x_array = x_series.to_numpy()
result_array = (x_array * 2.5 + 5) / (x_array + 1)
return pl.Series(result_array)
def run_map_batches_numpy():
sample_df.with_columns(
result_map_batches_numpy=pl.col("x").map_batches(
_calculate_batchwise_numpy,
return_dtype=pl.Float64,
)
)
def _calculate_batchwise_python(x_series: pl.Series) -> pl.Series:
x_array = x_series.to_list()
result_array = [_calculate_elementwise(x) for x in x_array]
return pl.Series(result_array)
def run_map_batches_python():
sample_df.with_columns(
result_map_batches_python=pl.col("x").map_batches(
_calculate_batchwise_python,
return_dtype=pl.Float64,
)
)
@numba.guvectorize([(numba.float64[:], numba.float64[:])], "(n) -> (n)")
def _calculate_batchwise_numba(x: np.ndarray, out: np.ndarray):
for i in range(x.shape[0]):
out[i] = (x[i] * 2.5 + 5) / (x[i] + 1)
def run_map_batches_numba():
sample_df.with_columns(
result_map_batches_numba=pl.col("x").map_batches(
_calculate_batchwise_numba,
return_dtype=pl.Float64,
)
)
def time_method(callable_name: str, number=num_trials.value) -> float:
fn = globals()[callable_name]
return timeit.timeit(fn, number=number)
return (
run_map_batches_numba,
run_map_batches_numpy,
run_map_batches_python,
run_map_elements,
run_native,
time_method,
)
@app.cell(hide_code=True)
def _(alt, pl, time_method):
benchmark_df = pl.from_dicts(
[
{
"title": "Native Polars",
"callable_name": "run_native",
},
{
"title": "Element-Wise UDF",
"callable_name": "run_map_elements",
},
{
"title": "Batch-Wise UDF (NumPy)",
"callable_name": "run_map_batches_numpy",
},
{
"title": "Batch-Wise UDF (Python)",
"callable_name": "run_map_batches_python",
},
{
"title": "Batch-Wise UDF (Numba)",
"callable_name": "run_map_batches_numba",
},
]
).with_columns(
time=pl.col("callable_name").map_elements(
time_method, return_dtype=pl.Float64
)
)
benchmark_plot = benchmark_df.plot.bar(
x=alt.X("title:N", title="Method", sort="-y"),
y=alt.Y("time:Q", title="Execution Time (s)", axis=alt.Axis(format=".3f")),
).properties(width=400)
return benchmark_df, benchmark_plot
@app.cell(hide_code=True)
def _():
import asyncio
import timeit
from typing import Iterable
import altair as alt
import httpx
import marimo as mo
import nest_asyncio
import numba
import numpy as np
from bs4 import BeautifulSoup
import polars as pl
# Fixes RuntimeError: asyncio.run() cannot be called from a running event loop
nest_asyncio.apply()
return (
BeautifulSoup,
Iterable,
alt,
asyncio,
httpx,
mo,
nest_asyncio,
np,
numba,
pl,
timeit,
)
if __name__ == "__main__":
app.run()