Spaces:
Sleeping
Sleeping
# /// script | |
# requires-python = ">=3.10" | |
# dependencies = [ | |
# "marimo", | |
# "matplotlib", | |
# "matplotlib-venn" | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.11.7" | |
app = marimo.App(width="medium") | |
def _(): | |
import marimo as mo | |
return (mo,) | |
def _(): | |
import matplotlib.pyplot as plt | |
from matplotlib_venn import venn2 | |
import numpy as np | |
return np, plt, venn2 | |
def _(mo): | |
mo.md( | |
r""" | |
# Law of Total Probability | |
_This notebook is a computational companion to the book ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/law_total/), by Stanford professor Chris Piech._ | |
The Law of Total Probability is a fundamental rule that helps us calculate probabilities by breaking down complex events into simpler parts. It's particularly useful when we want to compute the probability of an event that can occur through multiple distinct scenarios. | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## The Core Concept | |
The Law of Total Probability emerged from a simple but powerful observation: any event E can be broken down into parts based on another event F and its complement Fᶜ. | |
### From Simple Observation to Powerful Law | |
Consider an event E that can occur in two ways: | |
1. When F occurs (E ∩ F) | |
2. When F doesn't occur (E ∩ Fᶜ) | |
This leads to our first insight: | |
$P(E) = P(E \cap F) + P(E \cap F^c)$ | |
Applying the chain rule to each term: | |
\begin{align} | |
P(E) &= P(E \cap F) + P(E \cap F^c) \\ | |
&= P(E|F)P(F) + P(E|F^c)P(F^c) | |
\end{align} | |
This two-part version generalizes to any number of [mutually exclusive](marimo.app/https://github.com/marimo-team/learn/blob/main/probability/03_probability_of_or.py) events that cover the sample space: | |
$P(A) = \sum_{i=1}^n P(A|B_i)P(B_i)$ | |
where {B₁, B₂, ..., Bₙ} forms a partition of the sample space. | |
""" | |
) | |
return | |
def _(): | |
def is_valid_partition(events, sample_space): | |
"""Check if events form a valid partition of the sample space""" | |
# Check if events are mutually exclusive | |
for i, event1 in enumerate(events): | |
for j, event2 in enumerate(events[i+1:], i+1): | |
if event1.intersection(event2): | |
return False | |
# Check if events cover sample space | |
union = set().union(*events) | |
return union == sample_space | |
# Example with dice | |
sample_space = {1, 2, 3, 4, 5, 6} | |
partition1 = [{1, 3, 5}, {2, 4, 6}] # odd vs even | |
partition2 = [{1, 2}, {3, 4}, {5, 6}] # pairs | |
print("Odd/Even partition:", is_valid_partition(partition1, sample_space)) | |
print("Number pairs partition:", is_valid_partition(partition2, sample_space)) | |
return is_valid_partition, partition1, partition2, sample_space | |
def _(is_valid_partition): | |
# Example: Student Grades | |
grade_space = {'A', 'B', 'C', 'D', 'F'} | |
passing_partition = [{'A', 'B', 'C'}, {'D', 'F'}] # Pass/Fail | |
letter_groups = [{'A'}, {'B'}, {'C'}, {'D'}, {'F'}] # Individual grades | |
print("Student Grades Examples:") | |
print("Pass/Fail partition:", is_valid_partition(passing_partition, grade_space)) | |
print("Individual grades partition:", is_valid_partition(letter_groups, grade_space)) | |
return grade_space, letter_groups, passing_partition | |
def _(is_valid_partition): | |
# Example: Card Suits | |
card_space = {'♠', '♣', '♥', '♦'} | |
color_partition = [{'♠', '♣'}, {'♥', '♦'}] # Black/Red | |
invalid_partition = [{'♠', '♥'}, {'♣'}] # Invalid: Doesn't cover full space | |
print("\nPlaying Cards Examples:") | |
print("Color-based partition:", is_valid_partition(color_partition, card_space)) # True | |
print("Invalid partition:", is_valid_partition(invalid_partition, card_space)) # False | |
return card_space, color_partition, invalid_partition | |
def _(mo, plt, venn2): | |
# Create Venn diagram for E and F | |
plt.figure(figsize=(10, 5)) | |
v = venn2(subsets=(0.3, 0.4, 0.2), | |
set_labels=('F', 'E')) | |
plt.title("Decomposing Event E using F") | |
viz_explanation = mo.md(r""" | |
### Visual Intuition | |
In this diagram: | |
- The red region (E) is split into two parts: | |
1. Part inside F (E ∩ F) | |
2. Part outside F (E ∩ Fᶜ) | |
This visualization shows why: | |
$P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$ | |
The same principle extends to any number of mutually exclusive parts! | |
""") | |
mo.hstack([plt.gca(), viz_explanation]) | |
return v, viz_explanation | |
def _(mo): | |
mo.md( | |
r""" | |
## Computing Total Probability | |
To use the Law of Total Probability: | |
1. Identify a partition of the sample space | |
2. Calculate $P(B_i)$ for each part | |
3. Calculate $P(A|B_i)$ for each part | |
4. Sum the products $P(A|B_i)P(B_i)$ | |
""" | |
) | |
return | |
def _(mo): | |
mo.md(r"""Let's implement this calculation:""") | |
return | |
def _(): | |
def total_probability(conditional_probs, partition_probs): | |
"""Calculate total probability using Law of Total Probability | |
conditional_probs: List of P(A|Bi) | |
partition_probs: List of P(Bi) | |
""" | |
if len(conditional_probs) != len(partition_probs): | |
raise ValueError("Must have same number of conditional and partition probabilities") | |
if abs(sum(partition_probs) - 1) > 1e-10: | |
raise ValueError("Partition probabilities must sum to 1") | |
return sum(c * p for c, p in zip(conditional_probs, partition_probs)) | |
return (total_probability,) | |
def _(mo): | |
mo.md( | |
r""" | |
## Example: System Reliability | |
Consider a computer system that can be in three states: | |
- Normal (70% of time) | |
- Degraded (20% of time) | |
- Critical (10% of time) | |
The probability of errors in each state: | |
- P(Error | Normal) = 0.01 (1%) | |
- P(Error | Degraded) = 0.15 (15%) | |
- P(Error | Critical) = 0.45 (45%) | |
Let's calculate the overall probability of encountering an error: | |
""" | |
) | |
return | |
def _(mo, total_probability): | |
# System states and probabilities | |
states = ["Normal", "Degraded", "Critical"] | |
state_probs = [0.7, 0.2, 0.1] # System spends 70%, 20%, 10% of time in each state | |
error_probs = [0.01, 0.15, 0.45] # Error rates increase with system degradation | |
# Calculate total probability | |
total_error = total_probability(error_probs, state_probs) | |
explanation = mo.md(f""" | |
### System Error Analysis | |
Given: | |
- Normal State (70% of time): | |
- Only 1% chance of errors | |
- Degraded State (20% of time): | |
- Higher 15% chance of errors | |
- Critical State (10% of time): | |
- Highest 45% chance of errors | |
Using Law of Total Probability: | |
$P(\text{{Error}}) = \sum_{{i=1}}^3 P(\text{{Error}}|B_i)P(B_i)$ | |
Step by step: | |
1. Normal: 0.01 × 0.7 = 0.007 (0.7%) | |
2. Degraded: 0.15 × 0.2 = 0.030 (3.0%) | |
3. Critical: 0.45 × 0.1 = 0.045 (4.5%) | |
Total: {total_error:.3f} or {total_error:.1%} chance of error | |
""") | |
explanation | |
return error_probs, explanation, state_probs, states, total_error | |
def _(mo): | |
mo.md(r"""## Interactive Example:""") | |
return | |
def _(late_given_dry, late_given_rain, mo, weather_prob): | |
mo.hstack([weather_prob, late_given_rain, late_given_dry]) | |
return | |
def _(mo): | |
# Create sliders for interactive example | |
weather_prob = mo.ui.slider(0, 1, value=0.3, label="P(Rain)") | |
late_given_rain = mo.ui.slider(0, 1, value=0.6, label="P(Late|Rain)") | |
late_given_dry = mo.ui.slider(0, 1, value=0.2, label="P(Late|No Rain)") | |
return late_given_dry, late_given_rain, weather_prob | |
def _(late_given_dry, late_given_rain, mo, plt, venn2, weather_prob): | |
# Calculate probabilities | |
p_rain = weather_prob.value | |
p_dry = 1 - p_rain | |
p_late = late_given_rain.value * p_rain + late_given_dry.value * p_dry | |
# Create explanation | |
explanation_example = mo.md(f""" | |
### Weather and Traffic Analysis | |
Given: | |
- P(Rain) = {p_rain:.2f} | |
- P(No Rain) = {p_dry:.2f} | |
- P(Late|Rain) = {late_given_rain.value:.2f} | |
- P(Late|No Rain) = {late_given_dry.value:.2f} | |
Using Law of Total Probability: | |
$P(\text{{Late}}) = P(\text{{Late}}|\text{{Rain}})P(\text{{Rain}}) + P(\text{{Late}}|\text{{No Rain}})P(\text{{No Rain}})$ | |
$P(\text{{Late}}) = ({late_given_rain.value:.2f} \ times {p_rain:.2f}) + ({late_given_dry.value:.2f} \ times {p_dry:.2f}) = {p_late:.2f}$ | |
""") | |
# Visualize with Venn diagram | |
plt.figure(figsize=(10, 5)) | |
_v = venn2(subsets=( | |
round(p_rain * (1 - late_given_rain.value), 2), # Rain only | |
round(p_dry * (1 - late_given_dry.value), 2), # No Rain only | |
round(p_rain * late_given_rain.value, 2) # Intersection | |
), set_labels=('Rain', 'Late')) | |
plt.title("Weather and Traffic Probability") | |
mo.hstack([plt.gca(), explanation_example]) | |
return explanation_example, p_dry, p_late, p_rain | |
def _(mo): | |
mo.md( | |
r""" | |
## Visual Intuition | |
The Law of Total Probability works because: | |
1. The partition divides the sample space into non-overlapping regions | |
2. Every outcome belongs to exactly one region | |
3. We account for all possible ways an event can occur | |
Let's visualize this with a tree diagram: | |
""" | |
) | |
return | |
def _(plt): | |
# Create tree diagram with better spacing | |
plt.figure(figsize=(12, 8)) | |
# First level - partition probabilities sum to 1 | |
plt.plot([0, 2], [6, 9], 'k-', linewidth=2) # B₁ branch | |
plt.plot([0, 2], [6, 6], 'k-', linewidth=2) # B₂ branch | |
plt.plot([0, 2], [6, 3], 'k-', linewidth=2) # B₃ branch | |
# Second level - conditional probabilities sum to 1 for each branch | |
plt.plot([2, 4], [9, 10], 'b-', linewidth=2) # A|B₁ | |
plt.plot([2, 4], [9, 8], 'r-', linewidth=2) # Aᶜ|B₁ | |
plt.plot([2, 4], [6, 7], 'b-', linewidth=2) # A|B₂ | |
plt.plot([2, 4], [6, 5], 'r-', linewidth=2) # Aᶜ|B₂ | |
plt.plot([2, 4], [3, 4], 'b-', linewidth=2) # A|B₃ | |
plt.plot([2, 4], [3, 2], 'r-', linewidth=2) # Aᶜ|B₃ | |
# Add labels with actual probabilities | |
plt.text(0, 6.2, 'S (1.0)', fontsize=12) | |
plt.text(2, 9.2, 'B₁ (1/3)', fontsize=12) | |
plt.text(2, 6.2, 'B₂ (1/3)', fontsize=12) | |
plt.text(2, 3.2, 'B₃ (1/3)', fontsize=12) | |
# Add conditional probability labels | |
plt.text(4, 10.2, 'A (P(A|B₁))', fontsize=10, color='blue') | |
plt.text(4, 7.8, 'Aᶜ (1-P(A|B₁))', fontsize=10, color='red') | |
plt.text(4, 7.2, 'A (P(A|B₂))', fontsize=10, color='blue') | |
plt.text(4, 4.8, 'Aᶜ (1-P(A|B₂))', fontsize=10, color='red') | |
plt.text(4, 4.2, 'A (P(A|B₃))', fontsize=10, color='blue') | |
plt.text(4, 1.8, 'Aᶜ (1-P(A|B₃))', fontsize=10, color='red') | |
plt.axis('off') | |
plt.gca() | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## 🤔 Test Your Understanding | |
For a fair six-sided die with partitions: | |
- B₁: Numbers less than 3 {1,2} | |
- B₂: Numbers from 3 to 4 {3,4} | |
- B₃: Numbers greater than 4 {5,6} | |
**Question 1**: Which of these statements correctly describes the partition? | |
<details> | |
<summary>The sets overlap at number 3</summary> | |
❌ Incorrect! The sets are clearly separated with no overlapping numbers. | |
</details> | |
<details> | |
<summary>Some numbers are missing from the partition</summary> | |
❌ Incorrect! All numbers from 1 to 6 are included exactly once. | |
</details> | |
<details> | |
<summary>The sets form a valid partition of {1,2,3,4,5,6}</summary> | |
✅ Correct! The sets are mutually exclusive and their union covers all outcomes. | |
</details> | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Summary | |
You've learned: | |
- How to identify valid partitions of a sample space | |
- The Law of Total Probability formula and its components | |
- How to break down complex probability calculations | |
- Applications to real-world scenarios | |
In the next lesson, we'll explore **Bayes' Theorem**, which builds on these concepts to solve even more sophisticated probability problems. | |
""" | |
) | |
return | |
if __name__ == "__main__": | |
app.run() | |