Spaces:
Running
Running
# /// script | |
# requires-python = ">=3.10" | |
# dependencies = [ | |
# "marimo", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.10.19" | |
app = marimo.App(width="medium") | |
def _(mo): | |
mo.md( | |
""" | |
# 📦 Collections | |
A "collection" is a type of variable that holds multiple values. | |
## Lists | |
Lists are ordered, mutable sequences. Create them using square brackets: | |
```python | |
fruits = ["apple", "banana", "orange"] | |
numbers = [1, 2, 3, 4, 5] | |
mixed = [1, "hello", 3.14, True] | |
``` | |
Below is an example list we'll use to explore operations. | |
""" | |
) | |
return | |
def _(): | |
sample_list = [1, 2, 3, 4, 5] | |
return (sample_list,) | |
def _(mo): | |
mo.md( | |
""" | |
## List operations | |
Here are common operations you can perform on lists. | |
Try changing the values in `sample_list` above and watch the results change. | |
""" | |
) | |
return | |
def _(sample_list): | |
len(sample_list) # List length | |
return | |
def _(sample_list): | |
extended_list = sample_list + [6] # Concatenate two lists | |
extended_list | |
return (extended_list,) | |
def _(extended_list): | |
extended_list[0] # Access first element | |
return | |
def _(extended_list): | |
extended_list[-1] # Access last element | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Tuples | |
Tuples are immutable sequences. They're like lists that can't be changed after creation: | |
""" | |
) | |
return | |
def _(): | |
coordinates = (10, 20) | |
return (coordinates,) | |
def _(coordinates): | |
x, y = coordinates # Tuple unpacking | |
x | |
return x, y | |
def _(mo): | |
mo.md("""#### Tuple concatenation""") | |
return | |
def _(): | |
tuple1 = (1, 2, 3) | |
tuple2 = (4, 5, 6) | |
tuple3 = tuple1 + tuple2 | |
tuple3 | |
return tuple1, tuple2, tuple3 | |
def _(mo): | |
mo.md( | |
""" | |
## Dictionaries | |
Dictionaries store key-value pairs. They're perfect for mapping relationships: | |
""" | |
) | |
return | |
def _(): | |
person = {"name": "John Doe", "age": 25, "city": "New York"} | |
return (person,) | |
def _(person): | |
person["name"] # Access value by key | |
return | |
def _(person): | |
person.keys() # Get all keys | |
return | |
def _(person): | |
person.values() # Get all values | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Sets | |
Sets are unordered collections of unique elements: | |
""" | |
) | |
return | |
def _(): | |
numbers_set = {1, 2, 3, 3, 2, 1} # Duplicates are removed | |
return (numbers_set,) | |
def _(numbers_set): | |
numbers_set | {4} # Add a new element | |
return | |
def _(): | |
{1, 2, 3} & {3, 4, 5} # Find common elements | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Collection methods and operations | |
Here are some common operations across collections: | |
```python | |
# Lists | |
my_list = [1, 2, 3] | |
my_list.insert(0, 0) # Insert at position | |
my_list.remove(2) # Remove first occurrence | |
my_list.sort() # Sort in place | |
sorted_list = sorted(my_list) # Return new sorted list | |
# Dictionaries | |
my_dict = {"a": 1} | |
my_dict.update({"b": 2}) # Add new key-value pairs | |
my_dict.get("c", "Not found") # Safe access with default | |
# Sets | |
set_a = {1, 2, 3} | |
set_b = {3, 4, 5} | |
set_a.union(set_b) # Combine sets | |
set_a.difference(set_b) # Elements in A but not in B | |
``` | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## Documentation | |
See the official [Python tutorial on data structures](https://docs.python.org/3/tutorial/datastructures.html) for more in-depth information. | |
""" | |
) | |
return | |
def _(): | |
import marimo as mo | |
return (mo,) | |
if __name__ == "__main__": | |
app.run() | |