Spaces:
Running
Running
# /// script | |
# requires-python = ">=3.10" | |
# dependencies = [ | |
# "marimo", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.10.19" | |
app = marimo.App() | |
def _(mo): | |
mo.md( | |
""" | |
# 📚 Dictionaries | |
Dictionaries are collections of key-value pairs, with each key associated with a value. The keys are unique, meaning they show up only once. | |
## Creating dictionaries | |
Here are a few ways to create dictionaries: | |
```python | |
simple_dict = {"name": "Alice", "age": 25} | |
empty_dict = dict() | |
from_pairs = dict([("a", 1), ("b", 2)]) | |
``` | |
Below is a sample dictionary we'll use to explore operations. | |
""" | |
) | |
return | |
def _(): | |
sample_dict = { | |
"name": "Python", | |
"type": "programming language", | |
"year": 1991, | |
"creator": "Guido van Rossum", | |
"is_awesome": True, | |
} | |
return (sample_dict,) | |
def _(mo): | |
mo.md( | |
""" | |
## Operations | |
Let's explore how to work with dictionaries. | |
**Try it!** Try modifying the `sample_dict` above and watch how the results change! | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
### Accessing values by key | |
Access values by key using square brackets, like below | |
""" | |
) | |
return | |
def _(sample_dict): | |
sample_dict['name'], sample_dict['year'] | |
return | |
def _(mo): | |
mo.md(r"""If you're not sure if a dictionary has a given key, use `get()`:""") | |
return | |
def _(sample_dict): | |
sample_dict.get("version", "Not specified"), sample_dict.get("type", "Unknown") | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Enumerating dictionary contents | |
Python dictionaries come with helpful methods to enumerate keys, values, and pairs. | |
""" | |
) | |
return | |
def _(sample_dict): | |
print(list(sample_dict.keys())) | |
return | |
def _(sample_dict): | |
print(list(sample_dict.values())) | |
return | |
def _(sample_dict): | |
print(list(sample_dict.items())) | |
return | |
def _(): | |
def demonstrate_modification(): | |
_dict = {"a": 1, "b": 2} | |
print("Original:", _dict) | |
# Adding/updating | |
_dict.update({"c": 3, "b": 22}) | |
print("After update:", _dict) | |
# Removing | |
_removed = _dict.pop("b") | |
print(f"Removed {_removed}, Now:", _dict) | |
demonstrate_modification() | |
return (demonstrate_modification,) | |
def _(mo): | |
mo.md( | |
""" | |
## Dictionary comprehension | |
Create dictionaries efficiently with dictionary comprehensions: | |
""" | |
) | |
return | |
def _(): | |
print({x: x**2 for x in range(5)}) | |
return | |
def _(): | |
print({x: x**2 for x in range(5) if x % 2 == 0}) | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Nested dictionaries | |
Dictionaries can contain other dictionaries, creating complex data structures: | |
""" | |
) | |
return | |
def _(): | |
nested_data = { | |
"users": { | |
"alice": { | |
"age": 25, | |
"email": "[email protected]", | |
"interests": ["python", "data science"], | |
}, | |
"bob": { | |
"age": 30, | |
"email": "[email protected]", | |
"interests": ["web dev", "gaming"], | |
}, | |
} | |
} | |
return (nested_data,) | |
def _(mo, nested_data): | |
mo.md(f"Alice's age: {nested_data['users']['alice']['age']}") | |
return | |
def _(mo, nested_data): | |
mo.md(f"Bob's interests: {nested_data['users']['bob']['interests']}") | |
return | |
def _(mo): | |
mo.md( | |
""" | |
## Common dictionary patterns | |
Here are some useful patterns when working with dictionaries: | |
```python | |
# Pattern 1: Counting items | |
counter = {} | |
for item in items: | |
counter[item] = counter.get(item, 0) + 1 | |
# Pattern 2: Grouping data | |
groups = {} | |
for item in _items: | |
key = get_group_key(item) | |
groups.setdefault(key, []).append(item) | |
# Pattern 3: Caching/Memoization | |
cache = {} | |
def expensive_function(arg): | |
if arg not in cache: | |
cache[arg] = compute_result(arg) | |
return cache[arg] | |
``` | |
""" | |
) | |
return | |
def _(): | |
import marimo as mo | |
return (mo,) | |
if __name__ == "__main__": | |
app.run() | |