Spaces:
Sleeping
Sleeping
Add probability of `OR` notebook with an interactive visualization
Browse files
probability/03_probability_of_or.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "marimo",
|
5 |
+
# "matplotlib",
|
6 |
+
# "matplotlib-venn"
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
|
10 |
+
import marimo
|
11 |
+
|
12 |
+
__generated_with = "0.11.2"
|
13 |
+
app = marimo.App()
|
14 |
+
|
15 |
+
|
16 |
+
@app.cell
|
17 |
+
def _():
|
18 |
+
import marimo as mo
|
19 |
+
return (mo,)
|
20 |
+
|
21 |
+
|
22 |
+
@app.cell
|
23 |
+
def _():
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
from matplotlib_venn import venn2
|
26 |
+
import numpy as np
|
27 |
+
return np, plt, venn2
|
28 |
+
|
29 |
+
|
30 |
+
@app.cell(hide_code=True)
|
31 |
+
def _(mo):
|
32 |
+
mo.md(
|
33 |
+
r"""
|
34 |
+
# Probability of Or
|
35 |
+
|
36 |
+
When calculating the probability of either one event _or_ another occurring, we need to be careful about how we combine probabilities. The method depends on whether the events can happen together[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_or/).
|
37 |
+
|
38 |
+
Let's explore how to calculate $P(E \cup F)$ or $P(E \text{ or } F)$ in different scenarios.
|
39 |
+
"""
|
40 |
+
)
|
41 |
+
return
|
42 |
+
|
43 |
+
|
44 |
+
@app.cell(hide_code=True)
|
45 |
+
def _(mo):
|
46 |
+
mo.md(
|
47 |
+
r"""
|
48 |
+
## Mutually Exclusive Events
|
49 |
+
|
50 |
+
Two events $E$ and $F$ are **mutually exclusive** if they cannot occur simultaneously.
|
51 |
+
In set notation, this means:
|
52 |
+
|
53 |
+
$E \cap F = \emptyset$
|
54 |
+
|
55 |
+
For example:
|
56 |
+
|
57 |
+
- Rolling an even number (2,4,6) vs rolling an odd number (1,3,5)
|
58 |
+
- Drawing a heart vs drawing a spade from a deck
|
59 |
+
- Passing vs failing a test
|
60 |
+
|
61 |
+
Here's a Python function to check if two sets of outcomes are mutually exclusive:
|
62 |
+
"""
|
63 |
+
)
|
64 |
+
return
|
65 |
+
|
66 |
+
|
67 |
+
@app.cell
|
68 |
+
def _():
|
69 |
+
def are_mutually_exclusive(event1, event2):
|
70 |
+
return len(event1.intersection(event2)) == 0
|
71 |
+
|
72 |
+
# Example with dice rolls
|
73 |
+
even_numbers = {2, 4, 6}
|
74 |
+
odd_numbers = {1, 3, 5}
|
75 |
+
prime_numbers = {2, 3, 5, 7}
|
76 |
+
return are_mutually_exclusive, even_numbers, odd_numbers, prime_numbers
|
77 |
+
|
78 |
+
|
79 |
+
@app.cell
|
80 |
+
def _(are_mutually_exclusive, even_numbers, odd_numbers):
|
81 |
+
are_mutually_exclusive(even_numbers, odd_numbers)
|
82 |
+
return
|
83 |
+
|
84 |
+
|
85 |
+
@app.cell
|
86 |
+
def _(are_mutually_exclusive, even_numbers, prime_numbers):
|
87 |
+
are_mutually_exclusive(even_numbers, prime_numbers)
|
88 |
+
return
|
89 |
+
|
90 |
+
|
91 |
+
@app.cell(hide_code=True)
|
92 |
+
def _(mo):
|
93 |
+
mo.md(
|
94 |
+
r"""
|
95 |
+
## Or with Mutually Exclusive Events
|
96 |
+
|
97 |
+
For mutually exclusive events, the probability of either event occurring is simply the sum of their individual probabilities:
|
98 |
+
|
99 |
+
$P(E \cup F) = P(E) + P(F)$
|
100 |
+
|
101 |
+
This extends to multiple events. For $n$ mutually exclusive events $E_1, E_2, \ldots, E_n$:
|
102 |
+
|
103 |
+
$P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n P(E_i)$
|
104 |
+
|
105 |
+
Let's implement this calculation:
|
106 |
+
"""
|
107 |
+
)
|
108 |
+
return
|
109 |
+
|
110 |
+
|
111 |
+
@app.cell
|
112 |
+
def _():
|
113 |
+
def prob_union_mutually_exclusive(probabilities):
|
114 |
+
return sum(probabilities)
|
115 |
+
|
116 |
+
# Example: Rolling a die
|
117 |
+
# P(even) = P(2) + P(4) + P(6)
|
118 |
+
p_even_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
|
119 |
+
print(f"P(rolling an even number) = {p_even_mutually_exclusive}")
|
120 |
+
|
121 |
+
# P(prime) = P(2) + P(3) + P(5)
|
122 |
+
p_prime_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
|
123 |
+
print(f"P(rolling a prime number) = {p_prime_mutually_exclusive}")
|
124 |
+
return (
|
125 |
+
p_even_mutually_exclusive,
|
126 |
+
p_prime_mutually_exclusive,
|
127 |
+
prob_union_mutually_exclusive,
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
@app.cell(hide_code=True)
|
132 |
+
def _(mo):
|
133 |
+
mo.md(
|
134 |
+
r"""
|
135 |
+
## Or with Non-Mutually Exclusive Events
|
136 |
+
|
137 |
+
When events can occur together, we need to use the **inclusion-exclusion principle**:
|
138 |
+
|
139 |
+
$P(E \cup F) = P(E) + P(F) - P(E \cap F)$
|
140 |
+
|
141 |
+
Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
|
142 |
+
|
143 |
+
For example, consider calculating $P(\text{prime or even})$ when rolling a die:
|
144 |
+
- Prime numbers: {2, 3, 5}
|
145 |
+
- Even numbers: {2, 4, 6}
|
146 |
+
- The number 2 is counted twice unless we subtract its probability
|
147 |
+
|
148 |
+
Here's how to implement this calculation:
|
149 |
+
"""
|
150 |
+
)
|
151 |
+
return
|
152 |
+
|
153 |
+
|
154 |
+
@app.cell
|
155 |
+
def _():
|
156 |
+
def prob_union_general(p_a, p_b, p_intersection):
|
157 |
+
"""Calculate probability of union for any two events"""
|
158 |
+
return p_a + p_b - p_intersection
|
159 |
+
|
160 |
+
# Example: Rolling a die
|
161 |
+
# P(prime or even)
|
162 |
+
p_prime_general = 3/6 # P(prime) = P(2,3,5)
|
163 |
+
p_even_general = 3/6 # P(even) = P(2,4,6)
|
164 |
+
p_intersection = 1/6 # P(intersection) = P(2)
|
165 |
+
|
166 |
+
result = prob_union_general(p_prime_general, p_even_general, p_intersection)
|
167 |
+
print(f"P(prime or even) = {p_prime_general} + {p_even_general} - {p_intersection} = {result}")
|
168 |
+
return (
|
169 |
+
p_even_general,
|
170 |
+
p_intersection,
|
171 |
+
p_prime_general,
|
172 |
+
prob_union_general,
|
173 |
+
result,
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
@app.cell(hide_code=True)
|
178 |
+
def _(mo):
|
179 |
+
mo.md(
|
180 |
+
r"""
|
181 |
+
### Extension to Three Events
|
182 |
+
|
183 |
+
For three events, the inclusion-exclusion principle becomes:
|
184 |
+
|
185 |
+
$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$
|
186 |
+
$- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$
|
187 |
+
$+ P(E_1 \cap E_2 \cap E_3)$
|
188 |
+
|
189 |
+
The pattern is:
|
190 |
+
|
191 |
+
1. Add individual probabilities
|
192 |
+
2. Subtract probabilities of pairs
|
193 |
+
3. Add probability of triple intersection
|
194 |
+
"""
|
195 |
+
)
|
196 |
+
return
|
197 |
+
|
198 |
+
|
199 |
+
@app.cell(hide_code=True)
|
200 |
+
def _(mo):
|
201 |
+
mo.md(r"""### Interactive example:""")
|
202 |
+
return
|
203 |
+
|
204 |
+
|
205 |
+
@app.cell
|
206 |
+
def _(event_type):
|
207 |
+
event_type
|
208 |
+
return
|
209 |
+
|
210 |
+
|
211 |
+
@app.cell(hide_code=True)
|
212 |
+
def _(mo):
|
213 |
+
# Create a dropdown to select the type of events to visualize
|
214 |
+
event_type = mo.ui.dropdown(
|
215 |
+
options=[
|
216 |
+
"Mutually Exclusive Events (Rolling Odd vs Even)",
|
217 |
+
"Non-Mutually Exclusive Events (Prime vs Even)",
|
218 |
+
"Three Events (Less than 3, Even, Prime)"
|
219 |
+
],
|
220 |
+
value="Mutually Exclusive Events (Rolling Odd vs Even)",
|
221 |
+
label="Select Event Type"
|
222 |
+
)
|
223 |
+
return (event_type,)
|
224 |
+
|
225 |
+
|
226 |
+
@app.cell(hide_code=True)
|
227 |
+
def _(event_type, mo, plt, venn2):
|
228 |
+
# Define the events and their probabilities
|
229 |
+
events_data = {
|
230 |
+
"Mutually Exclusive Events (Rolling Odd vs Even)": {
|
231 |
+
"sets": (round(3/6, 2), round(3/6, 2), 0), # (odd, even, intersection)
|
232 |
+
"labels": ("Odd\n{1,3,5}", "Even\n{2,4,6}"),
|
233 |
+
"title": "Mutually Exclusive Events: Odd vs Even Numbers",
|
234 |
+
"explanation": r"""
|
235 |
+
### Mutually Exclusive Events
|
236 |
+
|
237 |
+
$P(\text{Odd}) = \frac{3}{6} = 0.5$
|
238 |
+
$P(\text{Even}) = \frac{3}{6} = 0.5$
|
239 |
+
$P(\text{Odd} \cap \text{Even}) = 0$
|
240 |
+
|
241 |
+
$P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
|
242 |
+
|
243 |
+
These events are mutually exclusive because a number cannot be both odd and even.
|
244 |
+
"""
|
245 |
+
},
|
246 |
+
"Non-Mutually Exclusive Events (Prime vs Even)": {
|
247 |
+
"sets": (round(2/6, 2), round(2/6, 2), round(1/6, 2)), # (prime-only, even-only, intersection)
|
248 |
+
"labels": ("Prime\n{3,5}", "Even\n{4,6}"),
|
249 |
+
"title": "Non-Mutually Exclusive: Prime vs Even Numbers",
|
250 |
+
"explanation": r"""
|
251 |
+
### Non-Mutually Exclusive Events
|
252 |
+
|
253 |
+
$P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
|
254 |
+
$P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
|
255 |
+
$P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
|
256 |
+
|
257 |
+
$P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
|
258 |
+
|
259 |
+
These events overlap because 2 is both prime and even.
|
260 |
+
"""
|
261 |
+
},
|
262 |
+
"Three Events (Less than 3, Even, Prime)": {
|
263 |
+
"sets": (round(1/6, 2), round(2/6, 2), round(1/6, 2)), # (less than 3, even, intersection)
|
264 |
+
"labels": ("<3\n{1,2}", "Even\n{2,4,6}"),
|
265 |
+
"title": "Complex Example: Numbers < 3 and Even Numbers",
|
266 |
+
"explanation": r"""
|
267 |
+
### Complex Event Interaction
|
268 |
+
|
269 |
+
$P(x < 3) = \frac{2}{6}$ (1,2)
|
270 |
+
$P(\text{Even}) = \frac{3}{6}$ (2,4,6)
|
271 |
+
$P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
|
272 |
+
|
273 |
+
$P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
|
274 |
+
|
275 |
+
The number 2 belongs to both sets, requiring the inclusion-exclusion principle.
|
276 |
+
"""
|
277 |
+
}
|
278 |
+
}
|
279 |
+
|
280 |
+
# Get data for selected event type
|
281 |
+
data = events_data[event_type.value]
|
282 |
+
|
283 |
+
# Create visualization
|
284 |
+
plt.figure(figsize=(10, 5))
|
285 |
+
v = venn2(subsets=data["sets"],
|
286 |
+
set_labels=data["labels"])
|
287 |
+
plt.title(data["title"])
|
288 |
+
|
289 |
+
# Display explanation alongside visualization
|
290 |
+
mo.hstack([
|
291 |
+
plt.gcf(),
|
292 |
+
mo.md(data["explanation"])
|
293 |
+
])
|
294 |
+
return data, events_data, v
|
295 |
+
|
296 |
+
|
297 |
+
@app.cell(hide_code=True)
|
298 |
+
def _(mo):
|
299 |
+
mo.md(
|
300 |
+
r"""
|
301 |
+
## 🤔 Test Your Understanding
|
302 |
+
|
303 |
+
Consider rolling a six-sided die. Which of these statements are true?
|
304 |
+
|
305 |
+
<details>
|
306 |
+
<summary>1. P(even or less than 3) = P(even) + P(less than 3)</summary>
|
307 |
+
|
308 |
+
❌ Incorrect! These events are not mutually exclusive (2 is both even and less than 3).
|
309 |
+
We need to use the inclusion-exclusion principle.
|
310 |
+
</details>
|
311 |
+
|
312 |
+
<details>
|
313 |
+
<summary>2. P(even or greater than 4) = 4/6</summary>
|
314 |
+
|
315 |
+
✅ Correct! {2,4,6} ∪ {5,6} = {2,4,5,6}, so probability is 4/6.
|
316 |
+
</details>
|
317 |
+
|
318 |
+
<details>
|
319 |
+
<summary>3. P(prime or odd) = 5/6</summary>
|
320 |
+
|
321 |
+
✅ Correct! {2,3,5} ∪ {1,3,5} = {1,2,3,5}, so probability is 5/6.
|
322 |
+
</details>
|
323 |
+
"""
|
324 |
+
)
|
325 |
+
return
|
326 |
+
|
327 |
+
|
328 |
+
@app.cell(hide_code=True)
|
329 |
+
def _(mo):
|
330 |
+
mo.md(
|
331 |
+
"""
|
332 |
+
## Summary
|
333 |
+
|
334 |
+
You've learned:
|
335 |
+
|
336 |
+
- How to identify mutually exclusive events
|
337 |
+
- The addition rule for mutually exclusive events
|
338 |
+
- The inclusion-exclusion principle for overlapping events
|
339 |
+
- How to extend these concepts to multiple events
|
340 |
+
|
341 |
+
In the next lesson, we'll explore **conditional probability** - how the probability
|
342 |
+
of one event changes when we know another event has occurred.
|
343 |
+
"""
|
344 |
+
)
|
345 |
+
return
|
346 |
+
|
347 |
+
|
348 |
+
if __name__ == "__main__":
|
349 |
+
app.run()
|