Spaces:
Running
Running
Add probability of `OR` notebook with an interactive visualization
Browse files
probability/03_probability_of_or.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "marimo",
|
| 5 |
+
# "matplotlib",
|
| 6 |
+
# "matplotlib-venn"
|
| 7 |
+
# ]
|
| 8 |
+
# ///
|
| 9 |
+
|
| 10 |
+
import marimo
|
| 11 |
+
|
| 12 |
+
__generated_with = "0.11.2"
|
| 13 |
+
app = marimo.App()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@app.cell
|
| 17 |
+
def _():
|
| 18 |
+
import marimo as mo
|
| 19 |
+
return (mo,)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@app.cell
|
| 23 |
+
def _():
|
| 24 |
+
import matplotlib.pyplot as plt
|
| 25 |
+
from matplotlib_venn import venn2
|
| 26 |
+
import numpy as np
|
| 27 |
+
return np, plt, venn2
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@app.cell(hide_code=True)
|
| 31 |
+
def _(mo):
|
| 32 |
+
mo.md(
|
| 33 |
+
r"""
|
| 34 |
+
# Probability of Or
|
| 35 |
+
|
| 36 |
+
When calculating the probability of either one event _or_ another occurring, we need to be careful about how we combine probabilities. The method depends on whether the events can happen together[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_or/).
|
| 37 |
+
|
| 38 |
+
Let's explore how to calculate $P(E \cup F)$ or $P(E \text{ or } F)$ in different scenarios.
|
| 39 |
+
"""
|
| 40 |
+
)
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@app.cell(hide_code=True)
|
| 45 |
+
def _(mo):
|
| 46 |
+
mo.md(
|
| 47 |
+
r"""
|
| 48 |
+
## Mutually Exclusive Events
|
| 49 |
+
|
| 50 |
+
Two events $E$ and $F$ are **mutually exclusive** if they cannot occur simultaneously.
|
| 51 |
+
In set notation, this means:
|
| 52 |
+
|
| 53 |
+
$E \cap F = \emptyset$
|
| 54 |
+
|
| 55 |
+
For example:
|
| 56 |
+
|
| 57 |
+
- Rolling an even number (2,4,6) vs rolling an odd number (1,3,5)
|
| 58 |
+
- Drawing a heart vs drawing a spade from a deck
|
| 59 |
+
- Passing vs failing a test
|
| 60 |
+
|
| 61 |
+
Here's a Python function to check if two sets of outcomes are mutually exclusive:
|
| 62 |
+
"""
|
| 63 |
+
)
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@app.cell
|
| 68 |
+
def _():
|
| 69 |
+
def are_mutually_exclusive(event1, event2):
|
| 70 |
+
return len(event1.intersection(event2)) == 0
|
| 71 |
+
|
| 72 |
+
# Example with dice rolls
|
| 73 |
+
even_numbers = {2, 4, 6}
|
| 74 |
+
odd_numbers = {1, 3, 5}
|
| 75 |
+
prime_numbers = {2, 3, 5, 7}
|
| 76 |
+
return are_mutually_exclusive, even_numbers, odd_numbers, prime_numbers
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@app.cell
|
| 80 |
+
def _(are_mutually_exclusive, even_numbers, odd_numbers):
|
| 81 |
+
are_mutually_exclusive(even_numbers, odd_numbers)
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@app.cell
|
| 86 |
+
def _(are_mutually_exclusive, even_numbers, prime_numbers):
|
| 87 |
+
are_mutually_exclusive(even_numbers, prime_numbers)
|
| 88 |
+
return
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@app.cell(hide_code=True)
|
| 92 |
+
def _(mo):
|
| 93 |
+
mo.md(
|
| 94 |
+
r"""
|
| 95 |
+
## Or with Mutually Exclusive Events
|
| 96 |
+
|
| 97 |
+
For mutually exclusive events, the probability of either event occurring is simply the sum of their individual probabilities:
|
| 98 |
+
|
| 99 |
+
$P(E \cup F) = P(E) + P(F)$
|
| 100 |
+
|
| 101 |
+
This extends to multiple events. For $n$ mutually exclusive events $E_1, E_2, \ldots, E_n$:
|
| 102 |
+
|
| 103 |
+
$P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n P(E_i)$
|
| 104 |
+
|
| 105 |
+
Let's implement this calculation:
|
| 106 |
+
"""
|
| 107 |
+
)
|
| 108 |
+
return
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@app.cell
|
| 112 |
+
def _():
|
| 113 |
+
def prob_union_mutually_exclusive(probabilities):
|
| 114 |
+
return sum(probabilities)
|
| 115 |
+
|
| 116 |
+
# Example: Rolling a die
|
| 117 |
+
# P(even) = P(2) + P(4) + P(6)
|
| 118 |
+
p_even_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
|
| 119 |
+
print(f"P(rolling an even number) = {p_even_mutually_exclusive}")
|
| 120 |
+
|
| 121 |
+
# P(prime) = P(2) + P(3) + P(5)
|
| 122 |
+
p_prime_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
|
| 123 |
+
print(f"P(rolling a prime number) = {p_prime_mutually_exclusive}")
|
| 124 |
+
return (
|
| 125 |
+
p_even_mutually_exclusive,
|
| 126 |
+
p_prime_mutually_exclusive,
|
| 127 |
+
prob_union_mutually_exclusive,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@app.cell(hide_code=True)
|
| 132 |
+
def _(mo):
|
| 133 |
+
mo.md(
|
| 134 |
+
r"""
|
| 135 |
+
## Or with Non-Mutually Exclusive Events
|
| 136 |
+
|
| 137 |
+
When events can occur together, we need to use the **inclusion-exclusion principle**:
|
| 138 |
+
|
| 139 |
+
$P(E \cup F) = P(E) + P(F) - P(E \cap F)$
|
| 140 |
+
|
| 141 |
+
Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
|
| 142 |
+
|
| 143 |
+
For example, consider calculating $P(\text{prime or even})$ when rolling a die:
|
| 144 |
+
- Prime numbers: {2, 3, 5}
|
| 145 |
+
- Even numbers: {2, 4, 6}
|
| 146 |
+
- The number 2 is counted twice unless we subtract its probability
|
| 147 |
+
|
| 148 |
+
Here's how to implement this calculation:
|
| 149 |
+
"""
|
| 150 |
+
)
|
| 151 |
+
return
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
@app.cell
|
| 155 |
+
def _():
|
| 156 |
+
def prob_union_general(p_a, p_b, p_intersection):
|
| 157 |
+
"""Calculate probability of union for any two events"""
|
| 158 |
+
return p_a + p_b - p_intersection
|
| 159 |
+
|
| 160 |
+
# Example: Rolling a die
|
| 161 |
+
# P(prime or even)
|
| 162 |
+
p_prime_general = 3/6 # P(prime) = P(2,3,5)
|
| 163 |
+
p_even_general = 3/6 # P(even) = P(2,4,6)
|
| 164 |
+
p_intersection = 1/6 # P(intersection) = P(2)
|
| 165 |
+
|
| 166 |
+
result = prob_union_general(p_prime_general, p_even_general, p_intersection)
|
| 167 |
+
print(f"P(prime or even) = {p_prime_general} + {p_even_general} - {p_intersection} = {result}")
|
| 168 |
+
return (
|
| 169 |
+
p_even_general,
|
| 170 |
+
p_intersection,
|
| 171 |
+
p_prime_general,
|
| 172 |
+
prob_union_general,
|
| 173 |
+
result,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@app.cell(hide_code=True)
|
| 178 |
+
def _(mo):
|
| 179 |
+
mo.md(
|
| 180 |
+
r"""
|
| 181 |
+
### Extension to Three Events
|
| 182 |
+
|
| 183 |
+
For three events, the inclusion-exclusion principle becomes:
|
| 184 |
+
|
| 185 |
+
$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$
|
| 186 |
+
$- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$
|
| 187 |
+
$+ P(E_1 \cap E_2 \cap E_3)$
|
| 188 |
+
|
| 189 |
+
The pattern is:
|
| 190 |
+
|
| 191 |
+
1. Add individual probabilities
|
| 192 |
+
2. Subtract probabilities of pairs
|
| 193 |
+
3. Add probability of triple intersection
|
| 194 |
+
"""
|
| 195 |
+
)
|
| 196 |
+
return
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
@app.cell(hide_code=True)
|
| 200 |
+
def _(mo):
|
| 201 |
+
mo.md(r"""### Interactive example:""")
|
| 202 |
+
return
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
@app.cell
|
| 206 |
+
def _(event_type):
|
| 207 |
+
event_type
|
| 208 |
+
return
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
@app.cell(hide_code=True)
|
| 212 |
+
def _(mo):
|
| 213 |
+
# Create a dropdown to select the type of events to visualize
|
| 214 |
+
event_type = mo.ui.dropdown(
|
| 215 |
+
options=[
|
| 216 |
+
"Mutually Exclusive Events (Rolling Odd vs Even)",
|
| 217 |
+
"Non-Mutually Exclusive Events (Prime vs Even)",
|
| 218 |
+
"Three Events (Less than 3, Even, Prime)"
|
| 219 |
+
],
|
| 220 |
+
value="Mutually Exclusive Events (Rolling Odd vs Even)",
|
| 221 |
+
label="Select Event Type"
|
| 222 |
+
)
|
| 223 |
+
return (event_type,)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
@app.cell(hide_code=True)
|
| 227 |
+
def _(event_type, mo, plt, venn2):
|
| 228 |
+
# Define the events and their probabilities
|
| 229 |
+
events_data = {
|
| 230 |
+
"Mutually Exclusive Events (Rolling Odd vs Even)": {
|
| 231 |
+
"sets": (round(3/6, 2), round(3/6, 2), 0), # (odd, even, intersection)
|
| 232 |
+
"labels": ("Odd\n{1,3,5}", "Even\n{2,4,6}"),
|
| 233 |
+
"title": "Mutually Exclusive Events: Odd vs Even Numbers",
|
| 234 |
+
"explanation": r"""
|
| 235 |
+
### Mutually Exclusive Events
|
| 236 |
+
|
| 237 |
+
$P(\text{Odd}) = \frac{3}{6} = 0.5$
|
| 238 |
+
$P(\text{Even}) = \frac{3}{6} = 0.5$
|
| 239 |
+
$P(\text{Odd} \cap \text{Even}) = 0$
|
| 240 |
+
|
| 241 |
+
$P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
|
| 242 |
+
|
| 243 |
+
These events are mutually exclusive because a number cannot be both odd and even.
|
| 244 |
+
"""
|
| 245 |
+
},
|
| 246 |
+
"Non-Mutually Exclusive Events (Prime vs Even)": {
|
| 247 |
+
"sets": (round(2/6, 2), round(2/6, 2), round(1/6, 2)), # (prime-only, even-only, intersection)
|
| 248 |
+
"labels": ("Prime\n{3,5}", "Even\n{4,6}"),
|
| 249 |
+
"title": "Non-Mutually Exclusive: Prime vs Even Numbers",
|
| 250 |
+
"explanation": r"""
|
| 251 |
+
### Non-Mutually Exclusive Events
|
| 252 |
+
|
| 253 |
+
$P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
|
| 254 |
+
$P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
|
| 255 |
+
$P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
|
| 256 |
+
|
| 257 |
+
$P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
|
| 258 |
+
|
| 259 |
+
These events overlap because 2 is both prime and even.
|
| 260 |
+
"""
|
| 261 |
+
},
|
| 262 |
+
"Three Events (Less than 3, Even, Prime)": {
|
| 263 |
+
"sets": (round(1/6, 2), round(2/6, 2), round(1/6, 2)), # (less than 3, even, intersection)
|
| 264 |
+
"labels": ("<3\n{1,2}", "Even\n{2,4,6}"),
|
| 265 |
+
"title": "Complex Example: Numbers < 3 and Even Numbers",
|
| 266 |
+
"explanation": r"""
|
| 267 |
+
### Complex Event Interaction
|
| 268 |
+
|
| 269 |
+
$P(x < 3) = \frac{2}{6}$ (1,2)
|
| 270 |
+
$P(\text{Even}) = \frac{3}{6}$ (2,4,6)
|
| 271 |
+
$P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
|
| 272 |
+
|
| 273 |
+
$P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
|
| 274 |
+
|
| 275 |
+
The number 2 belongs to both sets, requiring the inclusion-exclusion principle.
|
| 276 |
+
"""
|
| 277 |
+
}
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
# Get data for selected event type
|
| 281 |
+
data = events_data[event_type.value]
|
| 282 |
+
|
| 283 |
+
# Create visualization
|
| 284 |
+
plt.figure(figsize=(10, 5))
|
| 285 |
+
v = venn2(subsets=data["sets"],
|
| 286 |
+
set_labels=data["labels"])
|
| 287 |
+
plt.title(data["title"])
|
| 288 |
+
|
| 289 |
+
# Display explanation alongside visualization
|
| 290 |
+
mo.hstack([
|
| 291 |
+
plt.gcf(),
|
| 292 |
+
mo.md(data["explanation"])
|
| 293 |
+
])
|
| 294 |
+
return data, events_data, v
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
@app.cell(hide_code=True)
|
| 298 |
+
def _(mo):
|
| 299 |
+
mo.md(
|
| 300 |
+
r"""
|
| 301 |
+
## 🤔 Test Your Understanding
|
| 302 |
+
|
| 303 |
+
Consider rolling a six-sided die. Which of these statements are true?
|
| 304 |
+
|
| 305 |
+
<details>
|
| 306 |
+
<summary>1. P(even or less than 3) = P(even) + P(less than 3)</summary>
|
| 307 |
+
|
| 308 |
+
❌ Incorrect! These events are not mutually exclusive (2 is both even and less than 3).
|
| 309 |
+
We need to use the inclusion-exclusion principle.
|
| 310 |
+
</details>
|
| 311 |
+
|
| 312 |
+
<details>
|
| 313 |
+
<summary>2. P(even or greater than 4) = 4/6</summary>
|
| 314 |
+
|
| 315 |
+
✅ Correct! {2,4,6} ∪ {5,6} = {2,4,5,6}, so probability is 4/6.
|
| 316 |
+
</details>
|
| 317 |
+
|
| 318 |
+
<details>
|
| 319 |
+
<summary>3. P(prime or odd) = 5/6</summary>
|
| 320 |
+
|
| 321 |
+
✅ Correct! {2,3,5} ∪ {1,3,5} = {1,2,3,5}, so probability is 5/6.
|
| 322 |
+
</details>
|
| 323 |
+
"""
|
| 324 |
+
)
|
| 325 |
+
return
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
@app.cell(hide_code=True)
|
| 329 |
+
def _(mo):
|
| 330 |
+
mo.md(
|
| 331 |
+
"""
|
| 332 |
+
## Summary
|
| 333 |
+
|
| 334 |
+
You've learned:
|
| 335 |
+
|
| 336 |
+
- How to identify mutually exclusive events
|
| 337 |
+
- The addition rule for mutually exclusive events
|
| 338 |
+
- The inclusion-exclusion principle for overlapping events
|
| 339 |
+
- How to extend these concepts to multiple events
|
| 340 |
+
|
| 341 |
+
In the next lesson, we'll explore **conditional probability** - how the probability
|
| 342 |
+
of one event changes when we know another event has occurred.
|
| 343 |
+
"""
|
| 344 |
+
)
|
| 345 |
+
return
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
if __name__ == "__main__":
|
| 349 |
+
app.run()
|