Haleshot commited on
Commit
17727c5
·
unverified ·
1 Parent(s): 90cc7e2

Add probability of `OR` notebook with an interactive visualization

Browse files
Files changed (1) hide show
  1. probability/03_probability_of_or.py +349 -0
probability/03_probability_of_or.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib",
6
+ # "matplotlib-venn"
7
+ # ]
8
+ # ///
9
+
10
+ import marimo
11
+
12
+ __generated_with = "0.11.2"
13
+ app = marimo.App()
14
+
15
+
16
+ @app.cell
17
+ def _():
18
+ import marimo as mo
19
+ return (mo,)
20
+
21
+
22
+ @app.cell
23
+ def _():
24
+ import matplotlib.pyplot as plt
25
+ from matplotlib_venn import venn2
26
+ import numpy as np
27
+ return np, plt, venn2
28
+
29
+
30
+ @app.cell(hide_code=True)
31
+ def _(mo):
32
+ mo.md(
33
+ r"""
34
+ # Probability of Or
35
+
36
+ When calculating the probability of either one event _or_ another occurring, we need to be careful about how we combine probabilities. The method depends on whether the events can happen together[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/prob_or/).
37
+
38
+ Let's explore how to calculate $P(E \cup F)$ or $P(E \text{ or } F)$ in different scenarios.
39
+ """
40
+ )
41
+ return
42
+
43
+
44
+ @app.cell(hide_code=True)
45
+ def _(mo):
46
+ mo.md(
47
+ r"""
48
+ ## Mutually Exclusive Events
49
+
50
+ Two events $E$ and $F$ are **mutually exclusive** if they cannot occur simultaneously.
51
+ In set notation, this means:
52
+
53
+ $E \cap F = \emptyset$
54
+
55
+ For example:
56
+
57
+ - Rolling an even number (2,4,6) vs rolling an odd number (1,3,5)
58
+ - Drawing a heart vs drawing a spade from a deck
59
+ - Passing vs failing a test
60
+
61
+ Here's a Python function to check if two sets of outcomes are mutually exclusive:
62
+ """
63
+ )
64
+ return
65
+
66
+
67
+ @app.cell
68
+ def _():
69
+ def are_mutually_exclusive(event1, event2):
70
+ return len(event1.intersection(event2)) == 0
71
+
72
+ # Example with dice rolls
73
+ even_numbers = {2, 4, 6}
74
+ odd_numbers = {1, 3, 5}
75
+ prime_numbers = {2, 3, 5, 7}
76
+ return are_mutually_exclusive, even_numbers, odd_numbers, prime_numbers
77
+
78
+
79
+ @app.cell
80
+ def _(are_mutually_exclusive, even_numbers, odd_numbers):
81
+ are_mutually_exclusive(even_numbers, odd_numbers)
82
+ return
83
+
84
+
85
+ @app.cell
86
+ def _(are_mutually_exclusive, even_numbers, prime_numbers):
87
+ are_mutually_exclusive(even_numbers, prime_numbers)
88
+ return
89
+
90
+
91
+ @app.cell(hide_code=True)
92
+ def _(mo):
93
+ mo.md(
94
+ r"""
95
+ ## Or with Mutually Exclusive Events
96
+
97
+ For mutually exclusive events, the probability of either event occurring is simply the sum of their individual probabilities:
98
+
99
+ $P(E \cup F) = P(E) + P(F)$
100
+
101
+ This extends to multiple events. For $n$ mutually exclusive events $E_1, E_2, \ldots, E_n$:
102
+
103
+ $P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{i=1}^n P(E_i)$
104
+
105
+ Let's implement this calculation:
106
+ """
107
+ )
108
+ return
109
+
110
+
111
+ @app.cell
112
+ def _():
113
+ def prob_union_mutually_exclusive(probabilities):
114
+ return sum(probabilities)
115
+
116
+ # Example: Rolling a die
117
+ # P(even) = P(2) + P(4) + P(6)
118
+ p_even_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
119
+ print(f"P(rolling an even number) = {p_even_mutually_exclusive}")
120
+
121
+ # P(prime) = P(2) + P(3) + P(5)
122
+ p_prime_mutually_exclusive = prob_union_mutually_exclusive([1/6, 1/6, 1/6])
123
+ print(f"P(rolling a prime number) = {p_prime_mutually_exclusive}")
124
+ return (
125
+ p_even_mutually_exclusive,
126
+ p_prime_mutually_exclusive,
127
+ prob_union_mutually_exclusive,
128
+ )
129
+
130
+
131
+ @app.cell(hide_code=True)
132
+ def _(mo):
133
+ mo.md(
134
+ r"""
135
+ ## Or with Non-Mutually Exclusive Events
136
+
137
+ When events can occur together, we need to use the **inclusion-exclusion principle**:
138
+
139
+ $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
140
+
141
+ Why subtract $P(E \cap F)$? Because when we add $P(E)$ and $P(F)$, we count the overlap twice!
142
+
143
+ For example, consider calculating $P(\text{prime or even})$ when rolling a die:
144
+ - Prime numbers: {2, 3, 5}
145
+ - Even numbers: {2, 4, 6}
146
+ - The number 2 is counted twice unless we subtract its probability
147
+
148
+ Here's how to implement this calculation:
149
+ """
150
+ )
151
+ return
152
+
153
+
154
+ @app.cell
155
+ def _():
156
+ def prob_union_general(p_a, p_b, p_intersection):
157
+ """Calculate probability of union for any two events"""
158
+ return p_a + p_b - p_intersection
159
+
160
+ # Example: Rolling a die
161
+ # P(prime or even)
162
+ p_prime_general = 3/6 # P(prime) = P(2,3,5)
163
+ p_even_general = 3/6 # P(even) = P(2,4,6)
164
+ p_intersection = 1/6 # P(intersection) = P(2)
165
+
166
+ result = prob_union_general(p_prime_general, p_even_general, p_intersection)
167
+ print(f"P(prime or even) = {p_prime_general} + {p_even_general} - {p_intersection} = {result}")
168
+ return (
169
+ p_even_general,
170
+ p_intersection,
171
+ p_prime_general,
172
+ prob_union_general,
173
+ result,
174
+ )
175
+
176
+
177
+ @app.cell(hide_code=True)
178
+ def _(mo):
179
+ mo.md(
180
+ r"""
181
+ ### Extension to Three Events
182
+
183
+ For three events, the inclusion-exclusion principle becomes:
184
+
185
+ $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$
186
+ $- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$
187
+ $+ P(E_1 \cap E_2 \cap E_3)$
188
+
189
+ The pattern is:
190
+
191
+ 1. Add individual probabilities
192
+ 2. Subtract probabilities of pairs
193
+ 3. Add probability of triple intersection
194
+ """
195
+ )
196
+ return
197
+
198
+
199
+ @app.cell(hide_code=True)
200
+ def _(mo):
201
+ mo.md(r"""### Interactive example:""")
202
+ return
203
+
204
+
205
+ @app.cell
206
+ def _(event_type):
207
+ event_type
208
+ return
209
+
210
+
211
+ @app.cell(hide_code=True)
212
+ def _(mo):
213
+ # Create a dropdown to select the type of events to visualize
214
+ event_type = mo.ui.dropdown(
215
+ options=[
216
+ "Mutually Exclusive Events (Rolling Odd vs Even)",
217
+ "Non-Mutually Exclusive Events (Prime vs Even)",
218
+ "Three Events (Less than 3, Even, Prime)"
219
+ ],
220
+ value="Mutually Exclusive Events (Rolling Odd vs Even)",
221
+ label="Select Event Type"
222
+ )
223
+ return (event_type,)
224
+
225
+
226
+ @app.cell(hide_code=True)
227
+ def _(event_type, mo, plt, venn2):
228
+ # Define the events and their probabilities
229
+ events_data = {
230
+ "Mutually Exclusive Events (Rolling Odd vs Even)": {
231
+ "sets": (round(3/6, 2), round(3/6, 2), 0), # (odd, even, intersection)
232
+ "labels": ("Odd\n{1,3,5}", "Even\n{2,4,6}"),
233
+ "title": "Mutually Exclusive Events: Odd vs Even Numbers",
234
+ "explanation": r"""
235
+ ### Mutually Exclusive Events
236
+
237
+ $P(\text{Odd}) = \frac{3}{6} = 0.5$
238
+ $P(\text{Even}) = \frac{3}{6} = 0.5$
239
+ $P(\text{Odd} \cap \text{Even}) = 0$
240
+
241
+ $P(\text{Odd} \cup \text{Even}) = P(\text{Odd}) + P(\text{Even}) = 1$
242
+
243
+ These events are mutually exclusive because a number cannot be both odd and even.
244
+ """
245
+ },
246
+ "Non-Mutually Exclusive Events (Prime vs Even)": {
247
+ "sets": (round(2/6, 2), round(2/6, 2), round(1/6, 2)), # (prime-only, even-only, intersection)
248
+ "labels": ("Prime\n{3,5}", "Even\n{4,6}"),
249
+ "title": "Non-Mutually Exclusive: Prime vs Even Numbers",
250
+ "explanation": r"""
251
+ ### Non-Mutually Exclusive Events
252
+
253
+ $P(\text{Prime}) = \frac{3}{6} = 0.5$ (2,3,5)
254
+ $P(\text{Even}) = \frac{3}{6} = 0.5$ (2,4,6)
255
+ $P(\text{Prime} \cap \text{Even}) = \frac{1}{6}$ (2)
256
+
257
+ $P(\text{Prime} \cup \text{Even}) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$
258
+
259
+ These events overlap because 2 is both prime and even.
260
+ """
261
+ },
262
+ "Three Events (Less than 3, Even, Prime)": {
263
+ "sets": (round(1/6, 2), round(2/6, 2), round(1/6, 2)), # (less than 3, even, intersection)
264
+ "labels": ("<3\n{1,2}", "Even\n{2,4,6}"),
265
+ "title": "Complex Example: Numbers < 3 and Even Numbers",
266
+ "explanation": r"""
267
+ ### Complex Event Interaction
268
+
269
+ $P(x < 3) = \frac{2}{6}$ (1,2)
270
+ $P(\text{Even}) = \frac{3}{6}$ (2,4,6)
271
+ $P(x < 3 \cap \text{Even}) = \frac{1}{6}$ (2)
272
+
273
+ $P(x < 3 \cup \text{Even}) = \frac{2}{6} + \frac{3}{6} - \frac{1}{6} = \frac{4}{6}$
274
+
275
+ The number 2 belongs to both sets, requiring the inclusion-exclusion principle.
276
+ """
277
+ }
278
+ }
279
+
280
+ # Get data for selected event type
281
+ data = events_data[event_type.value]
282
+
283
+ # Create visualization
284
+ plt.figure(figsize=(10, 5))
285
+ v = venn2(subsets=data["sets"],
286
+ set_labels=data["labels"])
287
+ plt.title(data["title"])
288
+
289
+ # Display explanation alongside visualization
290
+ mo.hstack([
291
+ plt.gcf(),
292
+ mo.md(data["explanation"])
293
+ ])
294
+ return data, events_data, v
295
+
296
+
297
+ @app.cell(hide_code=True)
298
+ def _(mo):
299
+ mo.md(
300
+ r"""
301
+ ## 🤔 Test Your Understanding
302
+
303
+ Consider rolling a six-sided die. Which of these statements are true?
304
+
305
+ <details>
306
+ <summary>1. P(even or less than 3) = P(even) + P(less than 3)</summary>
307
+
308
+ ❌ Incorrect! These events are not mutually exclusive (2 is both even and less than 3).
309
+ We need to use the inclusion-exclusion principle.
310
+ </details>
311
+
312
+ <details>
313
+ <summary>2. P(even or greater than 4) = 4/6</summary>
314
+
315
+ ✅ Correct! {2,4,6} ∪ {5,6} = {2,4,5,6}, so probability is 4/6.
316
+ </details>
317
+
318
+ <details>
319
+ <summary>3. P(prime or odd) = 5/6</summary>
320
+
321
+ ✅ Correct! {2,3,5} ∪ {1,3,5} = {1,2,3,5}, so probability is 5/6.
322
+ </details>
323
+ """
324
+ )
325
+ return
326
+
327
+
328
+ @app.cell(hide_code=True)
329
+ def _(mo):
330
+ mo.md(
331
+ """
332
+ ## Summary
333
+
334
+ You've learned:
335
+
336
+ - How to identify mutually exclusive events
337
+ - The addition rule for mutually exclusive events
338
+ - The inclusion-exclusion principle for overlapping events
339
+ - How to extend these concepts to multiple events
340
+
341
+ In the next lesson, we'll explore **conditional probability** - how the probability
342
+ of one event changes when we know another event has occurred.
343
+ """
344
+ )
345
+ return
346
+
347
+
348
+ if __name__ == "__main__":
349
+ app.run()