Spaces:
Running
Running
Akshay Agrawal
commited on
Commit
·
48f7de2
1
Parent(s):
225e16e
Edits to sets notebook
Browse files* Expand prose, and write in complete sentences. Simplify the language.
* Use code cells as a teaching tool, encouraging users to modify code
and re-run, instead of always relying on UI elements. The focus is on
learning probability with an emphasis on computation, so sometimes the
code should be front and center.
* Add explanatory text for the netflix interactive example.
* Add a subsection on set builder notation, with a code example.
- data_science/00.01-set-theory-fundamentals.py +0 -352
- probability/00-sets.py +297 -0
data_science/00.01-set-theory-fundamentals.py
DELETED
@@ -1,352 +0,0 @@
|
|
1 |
-
# /// script
|
2 |
-
# requires-python = ">=3.10"
|
3 |
-
# dependencies = [
|
4 |
-
# "marimo",
|
5 |
-
# ]
|
6 |
-
# ///
|
7 |
-
|
8 |
-
import marimo
|
9 |
-
|
10 |
-
__generated_with = "0.10.17"
|
11 |
-
app = marimo.App()
|
12 |
-
|
13 |
-
|
14 |
-
@app.cell(hide_code=True)
|
15 |
-
def _(mo):
|
16 |
-
mo.md(
|
17 |
-
"""
|
18 |
-
# 🎯 Set Theory: The Building Blocks of Probability
|
19 |
-
|
20 |
-
Welcome to the magical world of sets! Think of sets as the LEGO® blocks of probability -
|
21 |
-
they're the fundamental pieces we use to build more complex concepts.
|
22 |
-
|
23 |
-
## What is a Set?
|
24 |
-
|
25 |
-
A set is a collection of distinct objects, called elements or members.
|
26 |
-
|
27 |
-
For example:
|
28 |
-
|
29 |
-
- 🎨 Colors = {red, blue, green}
|
30 |
-
|
31 |
-
- 🔢 Even numbers under 10 = {2, 4, 6, 8}
|
32 |
-
|
33 |
-
- 🐾 Pets = {dog, cat, hamster, fish}
|
34 |
-
"""
|
35 |
-
)
|
36 |
-
return
|
37 |
-
|
38 |
-
|
39 |
-
@app.cell
|
40 |
-
def _(elements):
|
41 |
-
elements
|
42 |
-
return
|
43 |
-
|
44 |
-
|
45 |
-
@app.cell(hide_code=True)
|
46 |
-
def _(mo):
|
47 |
-
# interactive set creator
|
48 |
-
elements = mo.ui.text(
|
49 |
-
value="🐶,🐱,🐹",
|
50 |
-
label="Create your own set (use commas to separate elements)"
|
51 |
-
)
|
52 |
-
return (elements,)
|
53 |
-
|
54 |
-
|
55 |
-
@app.cell(hide_code=True)
|
56 |
-
def _(elements, mo):
|
57 |
-
user_set = set(elements.value.split(','))
|
58 |
-
|
59 |
-
mo.md(f"""
|
60 |
-
### Your Custom Set:
|
61 |
-
|
62 |
-
${{{', '.join(user_set)}}}$
|
63 |
-
|
64 |
-
Number of elements: {len(user_set)}
|
65 |
-
""")
|
66 |
-
return (user_set,)
|
67 |
-
|
68 |
-
|
69 |
-
@app.cell(hide_code=True)
|
70 |
-
def _(mo):
|
71 |
-
mo.md(
|
72 |
-
"""
|
73 |
-
## 🎮 Set Operations Playground
|
74 |
-
|
75 |
-
Let's explore the three fundamental set operations:
|
76 |
-
|
77 |
-
- Union (∪): Combining sets
|
78 |
-
|
79 |
-
- Intersection (∩): Finding common elements
|
80 |
-
|
81 |
-
- Difference (-): What's unique to one set
|
82 |
-
|
83 |
-
Try creating two sets below!
|
84 |
-
"""
|
85 |
-
)
|
86 |
-
return
|
87 |
-
|
88 |
-
|
89 |
-
@app.cell
|
90 |
-
def _(operation):
|
91 |
-
operation
|
92 |
-
return
|
93 |
-
|
94 |
-
|
95 |
-
@app.cell(hide_code=True)
|
96 |
-
def _(mo):
|
97 |
-
set_a = mo.ui.text(value="🍕,🍔,🌭,🍟", label="Set A (Fast Food)")
|
98 |
-
set_b = mo.ui.text(value="🍕,🥗,🥙,🍟", label="Set B (Healthy-ish Food)")
|
99 |
-
|
100 |
-
operation = mo.ui.dropdown(
|
101 |
-
options=["Union", "Intersection", "Difference"],
|
102 |
-
value="Union",
|
103 |
-
label="Choose Operation"
|
104 |
-
)
|
105 |
-
return operation, set_a, set_b
|
106 |
-
|
107 |
-
|
108 |
-
@app.cell
|
109 |
-
def _(mo, operation, set_a, set_b):
|
110 |
-
A = set(set_a.value.split(','))
|
111 |
-
B = set(set_b.value.split(','))
|
112 |
-
|
113 |
-
results = {
|
114 |
-
"Union": (A | B, "∪", "Everything from both sets"),
|
115 |
-
"Intersection": (A & B, "∩", "Common elements"),
|
116 |
-
"Difference": (A - B, "-", "In A but not in B")
|
117 |
-
}
|
118 |
-
|
119 |
-
_result, symbol, description = results[operation.value]
|
120 |
-
|
121 |
-
mo.md(f"""
|
122 |
-
### Set Operation Result
|
123 |
-
|
124 |
-
$A {symbol} B = {{{', '.join(_result)}}}$
|
125 |
-
|
126 |
-
**What this means**: {description}
|
127 |
-
|
128 |
-
**Set A**: {', '.join(A)}
|
129 |
-
**Set B**: {', '.join(B)}
|
130 |
-
""")
|
131 |
-
return A, B, description, results, symbol
|
132 |
-
|
133 |
-
|
134 |
-
@app.cell(hide_code=True)
|
135 |
-
def _(mo):
|
136 |
-
mo.md(
|
137 |
-
"""
|
138 |
-
## 🎬 Netflix Shows Example
|
139 |
-
|
140 |
-
Let's use set theory to understand content recommendations!
|
141 |
-
"""
|
142 |
-
)
|
143 |
-
return
|
144 |
-
|
145 |
-
|
146 |
-
@app.cell
|
147 |
-
def _(viewer_type):
|
148 |
-
viewer_type
|
149 |
-
return
|
150 |
-
|
151 |
-
|
152 |
-
@app.cell
|
153 |
-
def _(mo):
|
154 |
-
# Netflix genres example
|
155 |
-
action_fans = {"Stranger Things", "The Witcher", "Money Heist"}
|
156 |
-
drama_fans = {"The Crown", "Money Heist", "Bridgerton"}
|
157 |
-
|
158 |
-
viewer_type = mo.ui.radio(
|
159 |
-
options=["New Viewer", "Action Fan", "Drama Fan"],
|
160 |
-
value="New Viewer",
|
161 |
-
label="Select Viewer Type"
|
162 |
-
)
|
163 |
-
return action_fans, drama_fans, viewer_type
|
164 |
-
|
165 |
-
|
166 |
-
@app.cell
|
167 |
-
def _(action_fans, drama_fans, mo, viewer_type):
|
168 |
-
recommendations = {
|
169 |
-
"New Viewer": action_fans | drama_fans, # Union for new viewers
|
170 |
-
"Action Fan": action_fans - drama_fans, # Unique action shows
|
171 |
-
"Drama Fan": drama_fans - action_fans # Unique drama shows
|
172 |
-
}
|
173 |
-
|
174 |
-
result = recommendations[viewer_type.value]
|
175 |
-
|
176 |
-
explanation = {
|
177 |
-
"New Viewer": "You get everything to explore!",
|
178 |
-
"Action Fan": "Pure action, no drama!",
|
179 |
-
"Drama Fan": "Drama-focused selections!"
|
180 |
-
}
|
181 |
-
|
182 |
-
mo.md(f"""
|
183 |
-
### 🎬 Recommended Shows
|
184 |
-
|
185 |
-
Based on your preference for **{viewer_type.value}**, we recommend:
|
186 |
-
|
187 |
-
{', '.join(result)}
|
188 |
-
|
189 |
-
**Why these shows?**
|
190 |
-
{explanation[viewer_type.value]}
|
191 |
-
""")
|
192 |
-
return explanation, recommendations, result
|
193 |
-
|
194 |
-
|
195 |
-
@app.cell(hide_code=True)
|
196 |
-
def _(mo):
|
197 |
-
mo.md(
|
198 |
-
"""
|
199 |
-
## 🧮 Set Properties
|
200 |
-
|
201 |
-
Important properties of sets:
|
202 |
-
|
203 |
-
1. **Commutative**: A ∪ B = B ∪ A
|
204 |
-
2. **Associative**: (A ∪ B) ∪ C = A ∪ (B ∪ C)
|
205 |
-
3. **Distributive**: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
|
206 |
-
|
207 |
-
Let's verify these with a fun exercise!
|
208 |
-
"""
|
209 |
-
)
|
210 |
-
return
|
211 |
-
|
212 |
-
|
213 |
-
@app.cell
|
214 |
-
def _(mo, property_check, set_size):
|
215 |
-
mo.hstack([property_check, set_size])
|
216 |
-
return
|
217 |
-
|
218 |
-
|
219 |
-
@app.cell
|
220 |
-
def _(mo):
|
221 |
-
# Interactive property verifier
|
222 |
-
property_check = mo.ui.dropdown(
|
223 |
-
options=[
|
224 |
-
"Commutative (Union)",
|
225 |
-
"Commutative (Intersection)",
|
226 |
-
"Associative (Union)"
|
227 |
-
],
|
228 |
-
value="Commutative (Union)",
|
229 |
-
label="Select Property to Verify"
|
230 |
-
)
|
231 |
-
|
232 |
-
set_size = mo.ui.slider(
|
233 |
-
value=3,
|
234 |
-
start=2,
|
235 |
-
stop=5,
|
236 |
-
label="Set Size for Testing"
|
237 |
-
)
|
238 |
-
return property_check, set_size
|
239 |
-
|
240 |
-
|
241 |
-
@app.cell
|
242 |
-
def _(mo, property_check, set_size):
|
243 |
-
import random
|
244 |
-
|
245 |
-
# Create random emoji sets for verification
|
246 |
-
emojis = ["😀", "😎", "🤓", "🤠", "😴", "🤯", "🤪", "😇"]
|
247 |
-
|
248 |
-
set1 = set(random.sample(emojis, set_size.value))
|
249 |
-
set2 = set(random.sample(emojis, set_size.value))
|
250 |
-
|
251 |
-
operations = {
|
252 |
-
"Commutative (Union)": (
|
253 |
-
set1 | set2,
|
254 |
-
set2 | set1,
|
255 |
-
"A ∪ B = B ∪ A"
|
256 |
-
),
|
257 |
-
"Commutative (Intersection)": (
|
258 |
-
set1 & set2,
|
259 |
-
set2 & set1,
|
260 |
-
"A ∩ B = B ∩ A"
|
261 |
-
),
|
262 |
-
"Associative (Union)": (
|
263 |
-
(set1 | set2) | set(random.sample(emojis, set_size.value)),
|
264 |
-
set1 | (set2 | set(random.sample(emojis, set_size.value))),
|
265 |
-
"(A ∪ B) ∪ C = A ∪ (B ∪ C)"
|
266 |
-
)
|
267 |
-
}
|
268 |
-
|
269 |
-
result1, result2, formula = operations[property_check.value]
|
270 |
-
|
271 |
-
mo.md(f"""
|
272 |
-
### Property Verification
|
273 |
-
|
274 |
-
**Testing**: {formula}
|
275 |
-
|
276 |
-
Set A: {', '.join(set1)}
|
277 |
-
Set B: {', '.join(set2)}
|
278 |
-
|
279 |
-
**Left Side**: {', '.join(result1)}
|
280 |
-
**Right Side**: {', '.join(result2)}
|
281 |
-
|
282 |
-
**Property holds**: {'✅' if result1 == result2 else '❌'}
|
283 |
-
""")
|
284 |
-
return emojis, formula, operations, random, result1, result2, set1, set2
|
285 |
-
|
286 |
-
|
287 |
-
@app.cell(hide_code=True)
|
288 |
-
def _(mo):
|
289 |
-
quiz = mo.md("""
|
290 |
-
## 🎯 Quick Challenge
|
291 |
-
|
292 |
-
Given these sets:
|
293 |
-
|
294 |
-
- A = {🎮, 📱, 💻}
|
295 |
-
|
296 |
-
- B = {📱, 💻, 🖨️}
|
297 |
-
|
298 |
-
- C = {💻, 🖨️, ⌨️}
|
299 |
-
|
300 |
-
Can you:
|
301 |
-
|
302 |
-
1. Find all elements that are in either A or B
|
303 |
-
|
304 |
-
2. Find elements common to all three sets
|
305 |
-
|
306 |
-
3. Find elements in A that aren't in C
|
307 |
-
|
308 |
-
<details>
|
309 |
-
|
310 |
-
<summary>Check your answers!</summary>
|
311 |
-
|
312 |
-
1. A ∪ B = {🎮, 📱, 💻, 🖨️}<br>
|
313 |
-
2. A ∩ B ∩ C = {💻}<br>
|
314 |
-
3. A - C = {🎮, 📱}
|
315 |
-
|
316 |
-
</details>
|
317 |
-
""")
|
318 |
-
|
319 |
-
mo.callout(quiz, kind="info")
|
320 |
-
return (quiz,)
|
321 |
-
|
322 |
-
|
323 |
-
@app.cell(hide_code=True)
|
324 |
-
def _(mo):
|
325 |
-
callout_text = mo.md("""
|
326 |
-
## 🎯 Set Theory Master in Training!
|
327 |
-
|
328 |
-
You've learned:
|
329 |
-
|
330 |
-
- Basic set operations
|
331 |
-
|
332 |
-
- Set properties
|
333 |
-
|
334 |
-
- Real-world applications
|
335 |
-
|
336 |
-
Coming up next: Axiomatic Probability! 🎲✨
|
337 |
-
|
338 |
-
Remember: In probability, every event is a set, and every set can be an event!
|
339 |
-
""")
|
340 |
-
|
341 |
-
mo.callout(callout_text, kind="success")
|
342 |
-
return (callout_text,)
|
343 |
-
|
344 |
-
|
345 |
-
@app.cell
|
346 |
-
def _():
|
347 |
-
import marimo as mo
|
348 |
-
return (mo,)
|
349 |
-
|
350 |
-
|
351 |
-
if __name__ == "__main__":
|
352 |
-
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
probability/00-sets.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "marimo",
|
5 |
+
# ]
|
6 |
+
# ///
|
7 |
+
|
8 |
+
import marimo
|
9 |
+
|
10 |
+
__generated_with = "0.11.0"
|
11 |
+
app = marimo.App()
|
12 |
+
|
13 |
+
|
14 |
+
@app.cell(hide_code=True)
|
15 |
+
def _(mo):
|
16 |
+
mo.md(
|
17 |
+
r"""
|
18 |
+
# Sets
|
19 |
+
|
20 |
+
Probability is the study of "events", assigning numerical values to how likely
|
21 |
+
events are to occur. For example, probability lets us quantify how likely it is for it to rain or shine on a given day.
|
22 |
+
|
23 |
+
|
24 |
+
Typically we reason about _sets_ of events. In mathematics,
|
25 |
+
a set is a collection of elements, with no element included more than once.
|
26 |
+
Elements can be any kind of object.
|
27 |
+
|
28 |
+
For example:
|
29 |
+
|
30 |
+
- ☀️ Weather events: $\{\text{Rain}, \text{Overcast}, \text{Clear}\}$
|
31 |
+
- 🎲 Die rolls: $\{1, 2, 3, 4, 5, 6\}$
|
32 |
+
- 🪙 Pairs of coin flips = $\{ \text{(Heads, Heads)}, \text{(Heads, Tails)}, \text{(Tails, Tails)} \text{(Tails, Heads)}\}$
|
33 |
+
|
34 |
+
Sets are the building blocks of probability, and will arise frequently in our study.
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
return
|
38 |
+
|
39 |
+
|
40 |
+
@app.cell(hide_code=True)
|
41 |
+
def _(mo):
|
42 |
+
mo.md(r"""## Set operations""")
|
43 |
+
return
|
44 |
+
|
45 |
+
|
46 |
+
@app.cell(hide_code=True)
|
47 |
+
def _(mo):
|
48 |
+
mo.md(r"""In Python, sets are made with the `set` function:""")
|
49 |
+
return
|
50 |
+
|
51 |
+
|
52 |
+
@app.cell
|
53 |
+
def _():
|
54 |
+
A = set([2, 3, 5, 7])
|
55 |
+
A
|
56 |
+
return (A,)
|
57 |
+
|
58 |
+
|
59 |
+
@app.cell
|
60 |
+
def _():
|
61 |
+
B = set([0, 1, 2, 3, 5, 8])
|
62 |
+
B
|
63 |
+
return (B,)
|
64 |
+
|
65 |
+
|
66 |
+
@app.cell(hide_code=True)
|
67 |
+
def _(mo):
|
68 |
+
mo.md(
|
69 |
+
r"""
|
70 |
+
Below we explain common operations on sets.
|
71 |
+
|
72 |
+
_**Try it!** Try modifying the definitions of `A` and `B` above, and see how the results change below._
|
73 |
+
|
74 |
+
The **union** $A \cup B$ of sets $A$ and $B$ is the set of elements in $A$, $B$, or both.
|
75 |
+
"""
|
76 |
+
)
|
77 |
+
return
|
78 |
+
|
79 |
+
|
80 |
+
@app.cell
|
81 |
+
def _(A, B):
|
82 |
+
A | B
|
83 |
+
return
|
84 |
+
|
85 |
+
|
86 |
+
@app.cell(hide_code=True)
|
87 |
+
def _(mo):
|
88 |
+
mo.md(r"""The **intersection** $A \cap B$ is the set of elements in both $A$ and $B$""")
|
89 |
+
return
|
90 |
+
|
91 |
+
|
92 |
+
@app.cell
|
93 |
+
def _(A, B):
|
94 |
+
A & B
|
95 |
+
return
|
96 |
+
|
97 |
+
|
98 |
+
@app.cell(hide_code=True)
|
99 |
+
def _(mo):
|
100 |
+
mo.md(r"""The **difference** $A \setminus B$ is the set of elements in $A$ that are not in $B$.""")
|
101 |
+
return
|
102 |
+
|
103 |
+
|
104 |
+
@app.cell
|
105 |
+
def _(A, B):
|
106 |
+
A - B
|
107 |
+
return
|
108 |
+
|
109 |
+
|
110 |
+
@app.cell(hide_code=True)
|
111 |
+
def _(mo):
|
112 |
+
mo.md(
|
113 |
+
"""
|
114 |
+
### 🎬 An interactive example
|
115 |
+
|
116 |
+
Here's a simple example that classifies TV shows into sets by genre, and uses these sets to recommend shows to a user based on their preferences.
|
117 |
+
"""
|
118 |
+
)
|
119 |
+
return
|
120 |
+
|
121 |
+
|
122 |
+
@app.cell(hide_code=True)
|
123 |
+
def _(mo):
|
124 |
+
viewer_type = mo.ui.radio(
|
125 |
+
options={
|
126 |
+
"I like action and drama!": "New Viewer",
|
127 |
+
"I only like action shows": "Action Fan",
|
128 |
+
"I only like dramas": "Drama Fan",
|
129 |
+
},
|
130 |
+
value="I like action and drama!",
|
131 |
+
label="Which genre do you prefer?",
|
132 |
+
)
|
133 |
+
return (viewer_type,)
|
134 |
+
|
135 |
+
|
136 |
+
@app.cell(hide_code=True)
|
137 |
+
def _(viewer_type):
|
138 |
+
viewer_type
|
139 |
+
return
|
140 |
+
|
141 |
+
|
142 |
+
@app.cell
|
143 |
+
def _():
|
144 |
+
action_shows = {"Stranger Things", "The Witcher", "Money Heist"}
|
145 |
+
drama_shows = {"The Crown", "Money Heist", "Bridgerton"}
|
146 |
+
return action_shows, drama_shows
|
147 |
+
|
148 |
+
|
149 |
+
@app.cell
|
150 |
+
def _(action_shows, drama_shows):
|
151 |
+
recommendations = {
|
152 |
+
"New Viewer": action_shows | drama_shows, # Union for new viewers
|
153 |
+
"Action Fan": action_shows - drama_shows, # Unique action shows
|
154 |
+
"Drama Fan": drama_shows - action_shows, # Unique drama shows
|
155 |
+
}
|
156 |
+
return (recommendations,)
|
157 |
+
|
158 |
+
|
159 |
+
@app.cell(hide_code=True)
|
160 |
+
def _(mo, recommendations, viewer_type):
|
161 |
+
result = recommendations[viewer_type.value]
|
162 |
+
|
163 |
+
explanation = {
|
164 |
+
"New Viewer": "You get everything to explore!",
|
165 |
+
"Action Fan": "Pure action, no drama!",
|
166 |
+
"Drama Fan": "Drama-focused selections!",
|
167 |
+
}
|
168 |
+
|
169 |
+
mo.md(f"""
|
170 |
+
**🎬 Recommended shows.** Based on your preference for **{viewer_type.value}**,
|
171 |
+
we recommend:
|
172 |
+
|
173 |
+
{", ".join(result)}
|
174 |
+
|
175 |
+
**Why these shows?**
|
176 |
+
{explanation[viewer_type.value]}
|
177 |
+
""")
|
178 |
+
return explanation, result
|
179 |
+
|
180 |
+
|
181 |
+
@app.cell(hide_code=True)
|
182 |
+
def _(mo):
|
183 |
+
mo.md("""
|
184 |
+
### Exercise
|
185 |
+
|
186 |
+
Given these sets:
|
187 |
+
|
188 |
+
- A = {🎮, 📱, 💻}
|
189 |
+
|
190 |
+
- B = {📱, 💻, 🖨️}
|
191 |
+
|
192 |
+
- C = {💻, 🖨️, ⌨️}
|
193 |
+
|
194 |
+
Can you:
|
195 |
+
|
196 |
+
1. Find all elements that are in A or B
|
197 |
+
|
198 |
+
2. Find elements common to all three sets
|
199 |
+
|
200 |
+
3. Find elements in A that aren't in C
|
201 |
+
|
202 |
+
<details>
|
203 |
+
|
204 |
+
<summary>Check your answers!</summary>
|
205 |
+
|
206 |
+
1. A ∪ B = {🎮, 📱, 💻, 🖨️}<br>
|
207 |
+
2. A ∩ B ∩ C = {💻}<br>
|
208 |
+
3. A - C = {🎮, 📱}
|
209 |
+
|
210 |
+
</details>
|
211 |
+
""")
|
212 |
+
return
|
213 |
+
|
214 |
+
|
215 |
+
@app.cell(hide_code=True)
|
216 |
+
def _(mo):
|
217 |
+
mo.md(
|
218 |
+
r"""
|
219 |
+
## 🧮 Set properties
|
220 |
+
|
221 |
+
Here are some important properties of the set operations:
|
222 |
+
|
223 |
+
1. **Commutative**: $A \cup B = B \cup A$
|
224 |
+
2. **Associative**: $(A \cup B) \cup C = A \cup (B \cup C)$
|
225 |
+
3. **Distributive**: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
|
226 |
+
"""
|
227 |
+
)
|
228 |
+
return
|
229 |
+
|
230 |
+
|
231 |
+
@app.cell(hide_code=True)
|
232 |
+
def _(mo):
|
233 |
+
mo.md(
|
234 |
+
r"""
|
235 |
+
## Set builder notation
|
236 |
+
|
237 |
+
To compactly describe the elements in a set, we can use **set builder notation**, which specifies conditions that must be true for elements to be in the set.
|
238 |
+
|
239 |
+
For example, here is how to specify the set of positive numbers less than 10:
|
240 |
+
|
241 |
+
\[
|
242 |
+
\{x \mid 0 < x < 10 \}
|
243 |
+
\]
|
244 |
+
|
245 |
+
The predicate to the right of the vertical bar $\mid$ specifies conditions that must be true for an element to be in the set; the expression to the left of $\mid$ specifies the value being included.
|
246 |
+
|
247 |
+
In Python, set builder notation is called a "set comprehension."
|
248 |
+
"""
|
249 |
+
)
|
250 |
+
return
|
251 |
+
|
252 |
+
|
253 |
+
@app.cell
|
254 |
+
def _():
|
255 |
+
def predicate(x):
|
256 |
+
return x > 0 and x < 10
|
257 |
+
return (predicate,)
|
258 |
+
|
259 |
+
|
260 |
+
@app.cell
|
261 |
+
def _(predicate):
|
262 |
+
set(x for x in range(100) if predicate(x))
|
263 |
+
return
|
264 |
+
|
265 |
+
|
266 |
+
@app.cell(hide_code=True)
|
267 |
+
def _(mo):
|
268 |
+
mo.md("""**Try it!** Try modifying the `predicate` function above and see how the set changes.""")
|
269 |
+
return
|
270 |
+
|
271 |
+
|
272 |
+
@app.cell(hide_code=True)
|
273 |
+
def _(mo):
|
274 |
+
mo.md("""
|
275 |
+
## Summary
|
276 |
+
|
277 |
+
You've learned:
|
278 |
+
|
279 |
+
- Basic set operations
|
280 |
+
- Set properties
|
281 |
+
- Real-world applications
|
282 |
+
|
283 |
+
In the next lesson, we'll define probability from the ground up, using sets.
|
284 |
+
|
285 |
+
Remember: In probability, every event is a set, and every set can be an event!
|
286 |
+
""")
|
287 |
+
return
|
288 |
+
|
289 |
+
|
290 |
+
@app.cell
|
291 |
+
def _():
|
292 |
+
import marimo as mo
|
293 |
+
return (mo,)
|
294 |
+
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
app.run()
|