Haleshot commited on
Commit
53609e5
·
unverified ·
1 Parent(s): 90cc7e2

Add `conditional probability` notebook

Browse files
probability/04_conditional_probability.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "marimo",
5
+ # "matplotlib==3.10.0",
6
+ # "matplotlib-venn==1.1.1",
7
+ # "numpy==2.2.2",
8
+ # ]
9
+ # ///
10
+
11
+ import marimo
12
+
13
+ __generated_with = "0.11.2"
14
+ app = marimo.App(width="medium", app_title="Conditional Probability")
15
+
16
+
17
+ @app.cell
18
+ def _():
19
+ import marimo as mo
20
+ return (mo,)
21
+
22
+
23
+ @app.cell
24
+ def _():
25
+ import matplotlib.pyplot as plt
26
+ from matplotlib_venn import venn3
27
+ import numpy as np
28
+ return np, plt, venn3
29
+
30
+
31
+ @app.cell(hide_code=True)
32
+ def _(mo):
33
+ mo.md(
34
+ r"""
35
+ # Conditional Probability
36
+
37
+ In probability theory, we often want to update our beliefs when we receive new information.
38
+ Conditional probability helps us formalize this process by calculating "_what is the chance of
39
+ event $E$ happening given that we have already observed some other event $F$?_"[<sup>1</sup>](https://chrispiech.github.io/probabilityForComputerScientists/en/part1/cond_prob/)
40
+
41
+ When we condition on an event $F$:
42
+
43
+ - We enter the universe where $F$ has occurred
44
+ - Only outcomes consistent with $F$ are possible
45
+ - Our sample space reduces to $F$
46
+ """
47
+ )
48
+ return
49
+
50
+
51
+ @app.cell(hide_code=True)
52
+ def _(mo):
53
+ mo.md(
54
+ r"""
55
+ ## Definition of Conditional Probability
56
+
57
+ The probability of event $E$ given that event $F$ has occurred is denoted as $P(E|F)$ and is defined as:
58
+
59
+ $$P(E|F) = \frac{P(E \cap F)}{P(F)}$$
60
+
61
+ This formula tells us that the conditional probability is the probability of both events occurring
62
+ divided by the probability of the conditioning event.
63
+
64
+ Let's understand this with a function that computes conditional probability:
65
+ """
66
+ )
67
+ return
68
+
69
+
70
+ @app.cell(hide_code=True)
71
+ def _(mo, plt, venn3):
72
+ # Create figure with square boundaries
73
+ plt.figure(figsize=(10, 5))
74
+
75
+ # Draw square sample space first
76
+ rect = plt.Rectangle((-2, -2), 4, 4, fill=False, color='gray', linestyle='--')
77
+ plt.gca().add_patch(rect)
78
+
79
+ # Set the axis limits to show the full rectangle
80
+ plt.xlim(-2.5, 2.5)
81
+ plt.ylim(-2.5, 2.5)
82
+
83
+ # Create Venn diagram showing E and F
84
+ # For venn3, subsets order is: (100, 010, 110, 001, 101, 011, 111)
85
+ # Representing: (A, B, AB, C, AC, BC, ABC)
86
+ v = venn3(subsets=(30, 20, 10, 40, 0, 0, 0),
87
+ set_labels=('E', 'F', 'Rest'))
88
+
89
+ # Customize colors
90
+ if v:
91
+ for id in ['100', '010', '110', '001']:
92
+ if v.get_patch_by_id(id):
93
+ if id == '100':
94
+ v.get_patch_by_id(id).set_color('#ffcccc') # Light red for E
95
+ elif id == '010':
96
+ v.get_patch_by_id(id).set_color('#ccffcc') # Light green for F
97
+ elif id == '110':
98
+ v.get_patch_by_id(id).set_color('#e6ffe6') # Lighter green for intersection
99
+ elif id == '001':
100
+ v.get_patch_by_id(id).set_color('white') # White for rest
101
+
102
+ plt.title('Conditional Probability in Sample Space')
103
+
104
+ # Remove ticks but keep the box visible
105
+ plt.gca().set_yticks([])
106
+ plt.gca().set_xticks([])
107
+ plt.axis('on')
108
+
109
+ # Add sample space annotation with arrow
110
+ plt.annotate('Sample Space (100)',
111
+ xy=(-1.5, 1.5),
112
+ xytext=(-2.2, 2),
113
+ bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='gray'),
114
+ arrowprops=dict(arrowstyle='->'))
115
+
116
+ # Add explanation
117
+ explanation = mo.md(r"""
118
+ ### Visual Intuition
119
+
120
+ In our sample space of 100 outcomes:
121
+
122
+ - Event $E$ occurs in 40 cases (red region: 30 + 10)
123
+ - Event $F$ occurs in 30 cases (green region: 20 + 10)
124
+ - Both events occur together in 10 cases (overlap)
125
+ - Remaining cases: 40 (to complete sample space of 100)
126
+
127
+ When we condition on $F$:
128
+ $$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{10}{30} = \frac{1}{3} \approx 0.33$$
129
+
130
+ This means: When we know $F$ has occurred (restricting ourselves to the green region),
131
+ the probability of $E$ also occurring is $\frac{1}{3}$ - as 10 out of the 30 cases in the
132
+ green region also belong to the red region.
133
+ """)
134
+
135
+ mo.hstack([plt.gcf(), explanation])
136
+ return explanation, id, rect, v
137
+
138
+
139
+ @app.cell
140
+ def _():
141
+ def conditional_probability(p_intersection, p_condition):
142
+ if p_condition == 0:
143
+ raise ValueError("Cannot condition on an impossible event")
144
+ if p_intersection > p_condition:
145
+ raise ValueError("P(E∩F) cannot be greater than P(F)")
146
+
147
+ return p_intersection / p_condition
148
+ return (conditional_probability,)
149
+
150
+
151
+ @app.cell
152
+ def _(conditional_probability):
153
+ # Example 1: Rolling a die
154
+ # E: Rolling an even number (2,4,6)
155
+ # F: Rolling a number greater than 3 (4,5,6)
156
+ p_even_given_greater_than_3 = conditional_probability(2/6, 3/6)
157
+ print("Example 1: Rolling a die")
158
+ print(f"P(Even | >3) = {p_even_given_greater_than_3}") # Should be 2/3
159
+ return (p_even_given_greater_than_3,)
160
+
161
+
162
+ @app.cell
163
+ def _(conditional_probability):
164
+ # Example 2: Cards
165
+ # E: Drawing a Heart
166
+ # F: Drawing a Face card (J,Q,K)
167
+ p_heart_given_face = conditional_probability(3/52, 12/52)
168
+ print("\nExample 2: Drawing cards")
169
+ print(f"P(Heart | Face card) = {p_heart_given_face}") # Should be 1/4
170
+ return (p_heart_given_face,)
171
+
172
+
173
+ @app.cell
174
+ def _(conditional_probability):
175
+ # Example 3: Student grades
176
+ # E: Getting an A
177
+ # F: Studying more than 3 hours
178
+ p_a_given_study = conditional_probability(0.24, 0.40)
179
+ print("\nExample 3: Student grades")
180
+ print(f"P(A | Studied >3hrs) = {p_a_given_study}") # Should be 0.6
181
+ return (p_a_given_study,)
182
+
183
+
184
+ @app.cell
185
+ def _(conditional_probability):
186
+ # Example 4: Weather
187
+ # E: Raining
188
+ # F: Cloudy
189
+ p_rain_given_cloudy = conditional_probability(0.15, 0.30)
190
+ print("\nExample 4: Weather")
191
+ print(f"P(Rain | Cloudy) = {p_rain_given_cloudy}") # Should be 0.5
192
+ return (p_rain_given_cloudy,)
193
+
194
+
195
+ @app.cell
196
+ def _(conditional_probability):
197
+ # Example 5: Error cases
198
+ print("\nExample 5: Error cases")
199
+ try:
200
+ # Cannot condition on impossible event
201
+ conditional_probability(0.5, 0)
202
+ except ValueError as e:
203
+ print(f"Error 1: {e}")
204
+
205
+ try:
206
+ # Intersection cannot be larger than condition
207
+ conditional_probability(0.7, 0.5)
208
+ except ValueError as e:
209
+ print(f"Error 2: {e}")
210
+ return
211
+
212
+
213
+ @app.cell(hide_code=True)
214
+ def _(mo):
215
+ mo.md(
216
+ r"""
217
+ ## The Conditional Paradigm
218
+
219
+ When we condition on an event, we enter a new probability universe. In this universe:
220
+
221
+ 1. All probability axioms still hold
222
+ 2. We must consistently condition on the same event
223
+ 3. Our sample space becomes the conditioning event
224
+
225
+ Here's how our familiar probability rules look when conditioned on event $G$:
226
+
227
+ | Rule | Original | Conditioned on $G$ |
228
+ |------|----------|-------------------|
229
+ | Axiom 1 | $0 \leq P(E) \leq 1$ | $0 \leq P(E\|G) \leq 1$ |
230
+ | Axiom 2 | $P(S) = 1$ | $P(S\|G) = 1$ |
231
+ | Axiom 3* | $P(E \cup F) = P(E) + P(F)$ | $P(E \cup F\|G) = P(E\|G) + P(F\|G)$ |
232
+ | Complement | $P(E^C) = 1 - P(E)$ | $P(E^C\|G) = 1 - P(E\|G)$ |
233
+
234
+ *_For mutually exclusive events_
235
+ """
236
+ )
237
+ return
238
+
239
+
240
+ @app.cell(hide_code=True)
241
+ def _(mo):
242
+ mo.md(
243
+ r"""
244
+ ## Multiple Conditions
245
+
246
+ We can condition on multiple events. The notation $P(E|F,G)$ means "_the probability of $E$
247
+ occurring, given that both $F$ and $G$ have occurred._"
248
+
249
+ The conditional probability formula still holds in the universe where $G$ has occurred:
250
+
251
+ $$P(E|F,G) = \frac{P(E \cap F|G)}{P(F|G)}$$
252
+
253
+ This is a powerful extension that allows us to update our probabilities as we receive
254
+ multiple pieces of information.
255
+ """
256
+ )
257
+ return
258
+
259
+
260
+ @app.cell
261
+ def _():
262
+ def multiple_conditional_probability(p_intersection_all, p_intersection_conditions, p_condition):
263
+ """Calculate P(E|F,G) = P(E∩F|G)/P(F|G) = P(E∩F∩G)/P(F∩G)"""
264
+ if p_condition == 0:
265
+ raise ValueError("Cannot condition on an impossible event")
266
+ if p_intersection_conditions == 0:
267
+ raise ValueError("Cannot condition on an impossible combination of events")
268
+ if p_intersection_all > p_intersection_conditions:
269
+ raise ValueError("P(E∩F∩G) cannot be greater than P(F∩G)")
270
+
271
+ return p_intersection_all / p_intersection_conditions
272
+ return (multiple_conditional_probability,)
273
+
274
+
275
+ @app.cell
276
+ def _(multiple_conditional_probability):
277
+ # Example: College admissions
278
+ # E: Getting admitted
279
+ # F: High GPA
280
+ # G: Good test scores
281
+
282
+ # P(E∩F∩G) = P(Admitted ∩ HighGPA ∩ GoodScore) = 0.15
283
+ # P(F∩G) = P(HighGPA ∩ GoodScore) = 0.25
284
+
285
+ p_admit_given_both = multiple_conditional_probability(0.15, 0.25, 0.25)
286
+ print("College Admissions Example:")
287
+ print(f"P(Admitted | High GPA, Good Scores) = {p_admit_given_both}") # Should be 0.6
288
+
289
+ # Error case: impossible condition
290
+ try:
291
+ multiple_conditional_probability(0.3, 0.2, 0.2)
292
+ except ValueError as e:
293
+ print(f"\nError case: {e}")
294
+ return (p_admit_given_both,)
295
+
296
+
297
+ @app.cell(hide_code=True)
298
+ def _(mo):
299
+ mo.md(
300
+ r"""
301
+ ## 🤔 Test Your Understanding
302
+
303
+ Which of these statements about conditional probability are true?
304
+
305
+ <details>
306
+ <summary>Knowing F occurred always decreases the probability of E</summary>
307
+ ❌ False! Conditioning on F can either increase or decrease P(E), depending on how E and F are related.
308
+ </details>
309
+
310
+ <details>
311
+ <summary>P(E|F) represents entering a new probability universe where F has occurred</summary>
312
+ ✅ True! We restrict ourselves to only the outcomes where F occurred, making F our new sample space.
313
+ </details>
314
+
315
+ <details>
316
+ <summary>If P(E|F) = P(E), then E and F must be the same event</summary>
317
+ ❌ False! This actually means E and F are independent - knowing one doesn't affect the other.
318
+ </details>
319
+
320
+ <details>
321
+ <summary>P(E|F) can be calculated by dividing P(E∩F) by P(F)</summary>
322
+ ✅ True! This is the fundamental definition of conditional probability.
323
+ </details>
324
+ """
325
+ )
326
+ return
327
+
328
+
329
+ @app.cell(hide_code=True)
330
+ def _(mo):
331
+ mo.md(
332
+ """
333
+ ## Summary
334
+
335
+ You've learned:
336
+
337
+ - How conditional probability updates our beliefs with new information
338
+ - The formula $P(E|F) = P(E \cap F)/P(F)$ and its intuition
339
+ - How probability rules work in conditional universes
340
+ - How to handle multiple conditions
341
+
342
+ In the next lesson, we'll explore **independence** - when knowing about one event
343
+ tells us nothing about another.
344
+ """
345
+ )
346
+ return
347
+
348
+
349
+ if __name__ == "__main__":
350
+ app.run()