Debajyoti Debnath commited on
Commit
5a60aba
·
1 Parent(s): 8bc43c8

Finish adding polars tutorials

Browse files

Added two tutorials -
1. Working with columns
2. Data types

polars/08_working_with_columns.py ADDED
@@ -0,0 +1,605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "polars==1.18.0",
5
+ # "marimo",
6
+ # ]
7
+ # ///
8
+
9
+ import marimo
10
+
11
+ __generated_with = "0.11.13"
12
+ app = marimo.App(width="medium")
13
+
14
+
15
+ @app.cell(hide_code=True)
16
+ def _(mo):
17
+ mo.md(
18
+ r"""
19
+ # Working with Columns
20
+
21
+ Author: [Deb Debnath](https://github.com/debajyotid2)
22
+
23
+ **Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/user-guide/expressions/expression-expansion).
24
+ """
25
+ )
26
+ return
27
+
28
+
29
+ @app.cell
30
+ def _():
31
+ import csv
32
+ import marimo as mo
33
+ import polars as pl
34
+ from io import StringIO
35
+ return StringIO, csv, mo, pl
36
+
37
+
38
+ @app.cell(hide_code=True)
39
+ def _(mo):
40
+ mo.md(
41
+ r"""
42
+ ## Expressions
43
+
44
+ Data transformations are sometimes complicated, or involve massive computations which are time-consuming. You can make a small version of the dataset with the schema you are trying to work your transformation into. But there is a better way to do it in Polars.
45
+
46
+ A Polars expression is a lazy representation of a data transformation. "Lazy" means that the transformation is not eagerly (immediately) executed.
47
+
48
+ Expressions are modular and flexible. They can be composed to build more complex expressions. For example, to calculate speed from distance and time, you can have an expression as:
49
+ """
50
+ )
51
+ return
52
+
53
+
54
+ @app.cell
55
+ def _(pl):
56
+ speed_expr = pl.col("distance") / (pl.col("time"))
57
+ speed_expr
58
+ return (speed_expr,)
59
+
60
+
61
+ @app.cell(hide_code=True)
62
+ def _(mo):
63
+ mo.md(
64
+ r"""
65
+ ## Expression expansion
66
+
67
+ Expression expansion lets you write a single expression that can expand to multiple different expressions. So rather than repeatedly defining separate expressions, you can avoid redundancy while adhering to clean code principles (Do not Repeat Yourself - DRY). Since expressions are reusable, they aid in writing concise code.
68
+ """
69
+ )
70
+ return
71
+
72
+
73
+ @app.cell(hide_code=True)
74
+ def _(mo):
75
+ mo.md("""For the examples in this notebook, we will use a sliver of the *AI4I 2020 Predictive Maintenance Dataset*. This dataset comprises of measurements taken from sensors in industrial machinery undergoing preventive maintenance checks - basically being tested for failure conditions.""")
76
+ return
77
+
78
+
79
+ @app.cell
80
+ def _(StringIO, pl):
81
+ data_csv = """
82
+ Product ID,Type,Air temperature,Process temperature,Rotational speed,Tool wear,Machine failure,TWF,HDF,PWF,OSF,RNF
83
+ L51172,L,302.3,311.3,1614,129,0,0,1,0,0,0
84
+ M22586,M,300.8,311.9,1761,113,1,0,0,0,1,0
85
+ L51639,L,302.6,310.4,1743,191,0,1,0,0,0,1
86
+ L50250,L,300,309.1,1631,110,0,0,0,1,0,0
87
+ M20109,M,303.4,312.9,1422,63,1,0,0,0,0,0
88
+ """
89
+
90
+ data = pl.read_csv(StringIO(data_csv))
91
+ data
92
+ return data, data_csv
93
+
94
+
95
+ @app.cell(hide_code=True)
96
+ def _(mo):
97
+ mo.md(
98
+ r"""
99
+ ## Function `col`
100
+
101
+ The function `col` is used to refer to one column of a dataframe. It is one of the fundamental building blocks of expressions in Polars. `col` is also really handy in expression expansion.
102
+ """
103
+ )
104
+ return
105
+
106
+
107
+ @app.cell(hide_code=True)
108
+ def _(mo):
109
+ mo.md(
110
+ r"""
111
+ ### Explicit expansion by column name
112
+
113
+ The simplest form of expression expansion happens when you provide multiple column names to the function `col`.
114
+
115
+ Say you wish to convert all temperature values in deg. Kelvin (K) to deg. Fahrenheit (F). One way to do this would be to define individual expressions for each column as follows:
116
+ """
117
+ )
118
+ return
119
+
120
+
121
+ @app.cell
122
+ def _(data, pl):
123
+ exprs = [
124
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2),
125
+ ((pl.col("Process temperature") - 273.15) * 1.8 + 32).round(2)
126
+ ]
127
+
128
+ result = data.with_columns(exprs)
129
+ result
130
+ return exprs, result
131
+
132
+
133
+ @app.cell(hide_code=True)
134
+ def _(mo):
135
+ mo.md(r"""Expression expansion can reduce this verbosity when you list the column names you want the expression to expand to inside the `col` function. The result is the same as before.""")
136
+ return
137
+
138
+
139
+ @app.cell
140
+ def _(data, pl, result):
141
+ result_2 = data.with_columns(
142
+ (
143
+ (pl.col(
144
+ "Air temperature",
145
+ "Process temperature"
146
+ )
147
+ - 273.15) * 1.8 + 32
148
+ ).round(2)
149
+ )
150
+ result_2.equals(result)
151
+ return (result_2,)
152
+
153
+
154
+ @app.cell(hide_code=True)
155
+ def _(mo):
156
+ mo.md(r"""In this case, the expression that does the temperature conversion is expanded to a list of two expressions. The expansion of the expression is predictable and intuitive.""")
157
+ return
158
+
159
+
160
+ @app.cell(hide_code=True)
161
+ def _(mo):
162
+ mo.md(
163
+ r"""
164
+ ### Expansion by data type
165
+
166
+ Can we do better than explicitly writing the names of every columns we want transformed? Yes.
167
+
168
+ If you provide data types instead of column names, the expression is expanded to all columns that match one of the data types provided.
169
+
170
+ The example below performs the exact same computation as before:
171
+ """
172
+ )
173
+ return
174
+
175
+
176
+ @app.cell
177
+ def _(data, pl, result):
178
+ result_3 = data.with_columns(((pl.col(pl.Float64) - 273.15) * 1.8 + 32).round(2))
179
+ result_3.equals(result)
180
+ return (result_3,)
181
+
182
+
183
+ @app.cell(hide_code=True)
184
+ def _(mo):
185
+ mo.md(
186
+ r"""
187
+ However, you should be careful to ensure that the transformation is only applied to the columns you want. For ensuring this it is important to know the schema of the data beforehand.
188
+
189
+ `col` accepts multiple data types in case the columns you need have more than one data type.
190
+ """
191
+ )
192
+ return
193
+
194
+
195
+ @app.cell
196
+ def _(data, pl, result):
197
+ result_4 = data.with_columns(
198
+ (
199
+ (pl.col(
200
+ pl.Float32,
201
+ pl.Float64,
202
+ )
203
+ - 273.15) * 1.8 + 32
204
+ ).round(2)
205
+ )
206
+ result.equals(result_4)
207
+ return (result_4,)
208
+
209
+
210
+ @app.cell(hide_code=True)
211
+ def _(mo):
212
+ mo.md(
213
+ r"""
214
+ ### Expansion by pattern matching
215
+
216
+ `col` also accepts regular expressions for selecting columns by pattern matching. Regular expressions start and end with ^ and $, respectively.
217
+ """
218
+ )
219
+ return
220
+
221
+
222
+ @app.cell
223
+ def _(data, pl):
224
+ data.select(pl.col("^.*temperature$"))
225
+ return
226
+
227
+
228
+ @app.cell(hide_code=True)
229
+ def _(mo):
230
+ mo.md(r"""Regular expressions can be combined with exact column names.""")
231
+ return
232
+
233
+
234
+ @app.cell
235
+ def _(data, pl):
236
+ data.select(pl.col("^.*temperature$", "Tool wear"))
237
+ return
238
+
239
+
240
+ @app.cell(hide_code=True)
241
+ def _(mo):
242
+ mo.md(r"""**Note**: You _cannot_ mix strings (exact names, regular expressions) and data types in a `col` function.""")
243
+ return
244
+
245
+
246
+ @app.cell
247
+ def _(data, pl):
248
+ try:
249
+ data.select(pl.col("Air temperature", pl.Float64))
250
+ except TypeError as err:
251
+ print("TypeError:", err)
252
+ return
253
+
254
+
255
+ @app.cell(hide_code=True)
256
+ def _(mo):
257
+ mo.md(
258
+ r"""
259
+ ## Selecting all columns
260
+
261
+ To select all columns, you can use the `all` function.
262
+ """
263
+ )
264
+ return
265
+
266
+
267
+ @app.cell
268
+ def _(data, pl):
269
+ result_6 = data.select(pl.all())
270
+ result_6.equals(data)
271
+ return (result_6,)
272
+
273
+
274
+ @app.cell(hide_code=True)
275
+ def _(mo):
276
+ mo.md(
277
+ r"""
278
+ ## Excluding columns
279
+
280
+ There are scenarios where we might want to exclude specific columns from the ones selected by building expressions, e.g. by the `col` or `all` functions. For this purpose, we use the function `exclude`, which accepts exactly the same types of arguments as `col`:
281
+ """
282
+ )
283
+ return
284
+
285
+
286
+ @app.cell
287
+ def _(data, pl):
288
+ data.select(pl.all().exclude("^.*F$"))
289
+ return
290
+
291
+
292
+ @app.cell(hide_code=True)
293
+ def _(mo):
294
+ mo.md(r"""`exclude` can also be used after the function `col`:""")
295
+ return
296
+
297
+
298
+ @app.cell
299
+ def _(data, pl):
300
+ data.select(pl.col(pl.Int64).exclude("^.*F$"))
301
+ return
302
+
303
+
304
+ @app.cell(hide_code=True)
305
+ def _(mo):
306
+ mo.md(
307
+ r"""
308
+ ## Column renaming
309
+
310
+ When applying a transformation with an expression to a column, the data in the column gets overwritten with the transformed data. However, this might not be the intended outcome in all situations - ideally you would want to store transformed data in a new column. Applying multiple transformations to the same column at the same time without renaming leads to errors.
311
+ """
312
+ )
313
+ return
314
+
315
+
316
+ @app.cell
317
+ def _(data, pl):
318
+ from polars.exceptions import DuplicateError
319
+
320
+ try:
321
+ data.select(
322
+ (pl.col("Air temperature") - 273.15) * 1.8 + 32, # This would be named "Air temperature"...
323
+ pl.col("Air temperature") - 273.15, # And so would this.
324
+ )
325
+ except DuplicateError as err:
326
+ print("DuplicateError:", err)
327
+ return (DuplicateError,)
328
+
329
+
330
+ @app.cell(hide_code=True)
331
+ def _(mo):
332
+ mo.md(
333
+ r"""
334
+ ### Renaming a single column with `alias`
335
+
336
+ The function `alias` lets you rename a single column:
337
+ """
338
+ )
339
+ return
340
+
341
+
342
+ @app.cell
343
+ def _(data, pl):
344
+ data.select(
345
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).alias("Air temperature [F]"),
346
+ (pl.col("Air temperature") - 273.15).round(2).alias("Air temperature [C]")
347
+ )
348
+ return
349
+
350
+
351
+ @app.cell(hide_code=True)
352
+ def _(mo):
353
+ mo.md(
354
+ r"""
355
+ ### Prefixing and suffixing column names
356
+
357
+ As `alias` renames a single column at a time, it cannot be used during expression expansion. If it is sufficient add a static prefix or a static suffix to the existing names, you can use the functions `name.prefix` and `name.suffix` with `col`:
358
+ """
359
+ )
360
+ return
361
+
362
+
363
+ @app.cell
364
+ def _(data, pl):
365
+ data.select(
366
+ ((pl.col("Air temperature") - 273.15) * 1.8 + 32).round(2).name.prefix("deg F "),
367
+ (pl.col("Process temperature") - 273.15).round(2).name.suffix(" C"),
368
+ )
369
+ return
370
+
371
+
372
+ @app.cell(hide_code=True)
373
+ def _(mo):
374
+ mo.md(
375
+ r"""
376
+ ### Dynamic name replacement
377
+
378
+ If a static prefix/suffix is not enough, use `name.map`. `name.map` requires a function that transforms column names to the desired. The transformation should lead to unique names to avoid `DuplicateError`.
379
+ """
380
+ )
381
+ return
382
+
383
+
384
+ @app.cell
385
+ def _(data, pl):
386
+ # There is also `.name.to_lowercase`, so this usage of `.map` is moot.
387
+ data.select(pl.col("^.*F$").name.map(str.lower))
388
+ return
389
+
390
+
391
+ @app.cell(hide_code=True)
392
+ def _(mo):
393
+ mo.md(
394
+ r"""
395
+ ## Programmatically generating expressions
396
+
397
+ For this example, we will first create four additional columns with the rolling mean temperatures of the two temperature columns. Such transformations are sometimes used to create additional features for machine learning models or data analysis.
398
+ """
399
+ )
400
+ return
401
+
402
+
403
+ @app.cell
404
+ def _(data, pl):
405
+ ext_temp_data = data.with_columns(
406
+ pl.col("^.*temperature$").rolling_mean(window_size=2).round(2).name.prefix("Rolling mean ")
407
+ ).select(pl.col("^.*temperature*$"))
408
+ ext_temp_data
409
+ return (ext_temp_data,)
410
+
411
+
412
+ @app.cell(hide_code=True)
413
+ def _(mo):
414
+ mo.md(r"""Now, suppose we want to calculate the difference between the rolling mean and actual temperatures. We cannot use expression expansion here as we want differences between specific columns.""")
415
+ return
416
+
417
+
418
+ @app.cell(hide_code=True)
419
+ def _(mo):
420
+ mo.md(r"""At first, you may think about using a `for` loop:""")
421
+ return
422
+
423
+
424
+ @app.cell
425
+ def _(ext_temp_data, pl):
426
+ _result = ext_temp_data
427
+ for col_name in ["Air", "Process"]:
428
+ _result = _result.with_columns(
429
+ (abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature")))
430
+ .round(2).alias(f"Delta {col_name} temperature")
431
+ )
432
+ _result
433
+ return (col_name,)
434
+
435
+
436
+ @app.cell(hide_code=True)
437
+ def _(mo):
438
+ mo.md(r"""Using a `for` loop is functional, but not scalable, as each expression needs to be defined in an iteration and executed serially. Instead we can use a generator in Python to programmatically create all expressions at once. In conjunction with the `with_columns` context, we can take advantage of parallel execution of computations and query optimization from Polars.""")
439
+ return
440
+
441
+
442
+ @app.cell
443
+ def _(ext_temp_data, pl):
444
+ def delta_expressions(colnames: list[str]) -> pl.Expr:
445
+ for col_name in colnames:
446
+ yield (abs(pl.col(f"Rolling mean {col_name} temperature") - pl.col(f"{col_name} temperature"))
447
+ .round(2).alias(f"Delta {col_name} temperature"))
448
+
449
+
450
+ ext_temp_data.with_columns(delta_expressions(["Air", "Process"]))
451
+ return (delta_expressions,)
452
+
453
+
454
+ @app.cell(hide_code=True)
455
+ def _(mo):
456
+ mo.md(
457
+ r"""
458
+ ## More flexible column selections
459
+
460
+ For more flexible column selections, you can use column selectors from `selectors`. Column selectors allow for more expressiveness in the way you specify selections. For example, column selectors can perform the familiar set operations of union, intersection, difference, etc. We can use the union operation with the functions `string` and `ends_with` to select all string columns and the columns whose names end with "`_high`":
461
+ """
462
+ )
463
+ return
464
+
465
+
466
+ @app.cell
467
+ def _(data):
468
+ import polars.selectors as cs
469
+
470
+ data.select(cs.string() | cs.ends_with("F"))
471
+ return (cs,)
472
+
473
+
474
+ @app.cell(hide_code=True)
475
+ def _(mo):
476
+ mo.md(r"""Likewise, you can pick columns based on the category of the type of data, offering more flexibility than the `col` function. As an example, `cs.numeric` selects numeric data types (including `pl.Float32`, `pl.Float64`, `pl.Int32`, etc.) or `cs.temporal` for all dates, times and similar data types.""")
477
+ return
478
+
479
+
480
+ @app.cell(hide_code=True)
481
+ def _(mo):
482
+ mo.md(
483
+ r"""
484
+ ### Combining selectors with set operations
485
+
486
+ Multiple selectors can be combined using set operations and the usual Python operators:
487
+
488
+
489
+ | Operator | Operation |
490
+ |:--------:|:--------------------:|
491
+ | `A \| B` | Union |
492
+ | `A & B` | Intersection |
493
+ | `A - B` | Difference |
494
+ | `A ^ B` | Symmetric difference |
495
+ | `~A` | Complement |
496
+
497
+ For example, to select all failure indicator variables excluding the failure variables due to wear, we can perform a set difference between the column selectors.
498
+ """
499
+ )
500
+ return
501
+
502
+
503
+ @app.cell
504
+ def _(cs, data):
505
+ data.select(cs.contains("F") - cs.contains("W"))
506
+ return
507
+
508
+
509
+ @app.cell(hide_code=True)
510
+ def _(mo):
511
+ mo.md(
512
+ r"""
513
+ ### Resolving operator ambiguity
514
+
515
+ Expression functions can be chained on top of selectors:
516
+ """
517
+ )
518
+ return
519
+
520
+
521
+ @app.cell
522
+ def _(cs, data, pl):
523
+ ext_failure_data = data.select(cs.contains("F")).cast(pl.Boolean)
524
+ ext_failure_data
525
+ return (ext_failure_data,)
526
+
527
+
528
+ @app.cell(hide_code=True)
529
+ def _(mo):
530
+ mo.md(
531
+ r"""
532
+ However, operators that perform set operations on column selectors operate on both selectors and on expressions. For example, the operator `~` on a selector represents the set operation “complement” and on an expression represents the Boolean operation of negation.
533
+
534
+ For instance, if you want to negate the Boolean values in the columns “HDF”, “OSF”, and “RNF”, at first you would think about using the `~` operator with the column selector to choose all failure variables containing "W". Because of the operator ambiguity here, the columns that are not of interest are selected here.
535
+ """
536
+ )
537
+ return
538
+
539
+
540
+ @app.cell
541
+ def _(cs, ext_failure_data):
542
+ ext_failure_data.select((~cs.ends_with("WF")).name.prefix("No"))
543
+ return
544
+
545
+
546
+ @app.cell(hide_code=True)
547
+ def _(mo):
548
+ mo.md(r"""To resolve the operator ambiguity, we use `as_expr`:""")
549
+ return
550
+
551
+
552
+ @app.cell
553
+ def _(cs, ext_failure_data):
554
+ ext_failure_data.select((~cs.ends_with("WF").as_expr()).name.prefix("No"))
555
+ return
556
+
557
+
558
+ @app.cell(hide_code=True)
559
+ def _(mo):
560
+ mo.md(
561
+ r"""
562
+ ### Debugging selectors
563
+
564
+ The function `cs.is_selector` helps check whether a complex chain of selectors and operators ultimately results in a selector. For example, to resolve any ambiguity with the selector in the last example, we can do:
565
+ """
566
+ )
567
+ return
568
+
569
+
570
+ @app.cell
571
+ def _(cs):
572
+ cs.is_selector(~cs.ends_with("WF").as_expr())
573
+ return
574
+
575
+
576
+ @app.cell(hide_code=True)
577
+ def _(mo):
578
+ mo.md(r"""Additionally we can use `expand_selector` to see what columns a selector expands into. Note that for this function we need to provide additional context in the form of the dataframe.""")
579
+ return
580
+
581
+
582
+ @app.cell
583
+ def _(cs, ext_failure_data):
584
+ cs.expand_selector(
585
+ ext_failure_data,
586
+ cs.ends_with("WF"),
587
+ )
588
+ return
589
+
590
+
591
+ @app.cell(hide_code=True)
592
+ def _(mo):
593
+ mo.md(
594
+ r"""
595
+ ### References
596
+
597
+ 1. AI4I 2020 Predictive Maintenance Dataset [Dataset]. (2020). UCI Machine Learning Repository. ([link](https://doi.org/10.24432/C5HS5C)).
598
+ 2. Polars documentation ([link](https://docs.pola.rs/user-guide/expressions/expression-expansion/#more-flexible-column-selections))
599
+ """
600
+ )
601
+ return
602
+
603
+
604
+ if __name__ == "__main__":
605
+ app.run()
polars/09_data_types.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.11"
3
+ # dependencies = [
4
+ # "polars==1.18.0",
5
+ # "marimo",
6
+ # ]
7
+ # ///
8
+
9
+ import marimo
10
+
11
+ __generated_with = "0.12.0"
12
+ app = marimo.App(width="medium")
13
+
14
+
15
+ @app.cell(hide_code=True)
16
+ def _(mo):
17
+ mo.md(
18
+ r"""
19
+ # Data Types
20
+
21
+ Author: [Deb Debnath](https://github.com/debajyotid2)
22
+
23
+ **Note**: The following tutorial has been adapted from the Polars [documentation](https://docs.pola.rs/user-guide/concepts/data-types-and-structures/).
24
+ """
25
+ )
26
+ return
27
+
28
+
29
+ @app.cell
30
+ def _():
31
+ import marimo as mo
32
+ import polars as pl
33
+ return mo, pl
34
+
35
+
36
+ @app.cell(hide_code=True)
37
+ def _(mo):
38
+ mo.md(
39
+ r"""
40
+ Polars supports a variety of data types that fall broadly under the following categories:
41
+
42
+ - Numeric data types: integers and floating point numbers.
43
+ - Nested data types: lists, structs, and arrays.
44
+ - Temporal: dates, datetimes, times, and time deltas.
45
+ - Miscellaneous: strings, binary data, Booleans, categoricals, enums, and objects.
46
+
47
+ All types support missing values represented by `null` which is different from `NaN` used in floating point data types. The numeric datatypes in Polars loosely follow the type system of the Rust language, since its core functionalities are built in Rust.
48
+
49
+ [Here](https://docs.pola.rs/api/python/stable/reference/datatypes.html) is a full list of all data types Polars supports.
50
+ """
51
+ )
52
+ return
53
+
54
+
55
+ @app.cell(hide_code=True)
56
+ def _(mo):
57
+ mo.md(
58
+ r"""
59
+ ## Series
60
+
61
+ A series is a 1-dimensional data structure that can hold only one data type.
62
+ """
63
+ )
64
+ return
65
+
66
+
67
+ @app.cell
68
+ def _(pl):
69
+ s = pl.Series("emojis", ["😀", "🤣", "🥶", "💀", "🤖"])
70
+ s
71
+ return (s,)
72
+
73
+
74
+ @app.cell(hide_code=True)
75
+ def _(mo):
76
+ mo.md(r"""Unless specified, Polars infers the datatype from the supplied values.""")
77
+ return
78
+
79
+
80
+ @app.cell
81
+ def _(pl):
82
+ s1 = pl.Series("friends", ["Евгений", "अभिषेक", "秀良", "Federico", "Bob"])
83
+ s2 = pl.Series("uints", [0x00, 0x01, 0x10, 0x11], dtype=pl.UInt8)
84
+ s1.dtype, s2.dtype
85
+ return s1, s2
86
+
87
+
88
+ @app.cell(hide_code=True)
89
+ def _(mo):
90
+ mo.md(
91
+ r"""
92
+ ## Dataframe
93
+
94
+ A dataframe is a 2-dimensional data structure that contains uniquely named series and can hold multiple data types. Dataframes are more commonly used for data manipulation using the functionality of Polars.
95
+
96
+ The snippet below shows how to create a dataframe from a dictionary of lists:
97
+ """
98
+ )
99
+ return
100
+
101
+
102
+ @app.cell
103
+ def _(pl):
104
+ data = pl.DataFrame(
105
+ {
106
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
107
+ "Type": ["L", "M", "L", "L", "M"],
108
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
109
+ "Machine Failure": [False, True, False, False, True]
110
+ }
111
+ )
112
+ data
113
+ return (data,)
114
+
115
+
116
+ @app.cell(hide_code=True)
117
+ def _(mo):
118
+ mo.md(
119
+ r"""
120
+ ### Inspecting a dataframe
121
+
122
+ Polars has various functions to explore the data in a dataframe. We will use the dataframe `data` defined above in our examples. Alongside we can also see a view of the dataframe rendered by Marimo as the cells are executed.
123
+ """
124
+ )
125
+ return
126
+
127
+
128
+ @app.cell(hide_code=True)
129
+ def _(mo):
130
+ mo.md(
131
+ """
132
+ #### Head
133
+
134
+ The function `head` shows the first rows of a dataframe. Unless specified, it shows the first 5 rows.
135
+ """
136
+ )
137
+ return
138
+
139
+
140
+ @app.cell
141
+ def _(data):
142
+ data.head(3)
143
+ return
144
+
145
+
146
+ @app.cell(hide_code=True)
147
+ def _(mo):
148
+ mo.md(
149
+ r"""
150
+ #### Glimpse
151
+
152
+ The function `glimpse` is an alternative to `head` to view the first few columns, but displays each line of the output corresponding to a single column. That way, it makes inspecting wider dataframes easier.
153
+ """
154
+ )
155
+ return
156
+
157
+
158
+ @app.cell
159
+ def _(data):
160
+ print(data.glimpse(return_as_string=True))
161
+ return
162
+
163
+
164
+ @app.cell(hide_code=True)
165
+ def _(mo):
166
+ mo.md(
167
+ r"""
168
+ #### Tail
169
+
170
+ The `tail` function, just like its name suggests, shows the last rows of a dataframe. Unless the number of rows is specified, it will show the last 5 rows.
171
+ """
172
+ )
173
+ return
174
+
175
+
176
+ @app.cell
177
+ def _(data):
178
+ data.tail(3)
179
+ return
180
+
181
+
182
+ @app.cell(hide_code=True)
183
+ def _(mo):
184
+ mo.md(
185
+ r"""
186
+ #### Sample
187
+
188
+ `sample` can be used to show a specified number of randomly selected rows from the dataframe. Unless the number of rows is specified, it will show a single row. `sample` does not preserve order of the rows.
189
+ """
190
+ )
191
+ return
192
+
193
+
194
+ @app.cell
195
+ def _(data):
196
+ import random
197
+
198
+ random.seed(42) # For reproducibility.
199
+
200
+ data.sample(3)
201
+ return (random,)
202
+
203
+
204
+ @app.cell(hide_code=True)
205
+ def _(mo):
206
+ mo.md(
207
+ r"""
208
+ #### Describe
209
+
210
+ The function `describe` describes the summary statistics for all columns of a dataframe.
211
+ """
212
+ )
213
+ return
214
+
215
+
216
+ @app.cell
217
+ def _(data):
218
+ data.describe()
219
+ return
220
+
221
+
222
+ @app.cell(hide_code=True)
223
+ def _(mo):
224
+ mo.md(
225
+ r"""
226
+ ## Schema
227
+
228
+ A schema is a mapping showing the datatype corresponding to every column of a dataframe. The schema of a dataframe can be viewed using the attribute `schema`.
229
+ """
230
+ )
231
+ return
232
+
233
+
234
+ @app.cell
235
+ def _(data):
236
+ data.schema
237
+ return
238
+
239
+
240
+ @app.cell(hide_code=True)
241
+ def _(mo):
242
+ mo.md(r"""Since a schema is a mapping, it can be specified in the form of a Python dictionary. Then this dictionary can be used to specify the schema of a dataframe on definition. If not specified or the entry is `None`, Polars infers the datatype from the contents of the column. Note that if the schema is not specified, it will be inferred automatically by default.""")
243
+ return
244
+
245
+
246
+ @app.cell
247
+ def _(pl):
248
+ pl.DataFrame(
249
+ {
250
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
251
+ "Type": ["L", "M", "L", "L", "M"],
252
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
253
+ "Machine Failure": [False, True, False, False, True]
254
+ },
255
+ schema={"Product ID": pl.String, "Type": pl.String, "Air temperature": None, "Machine Failure": None},
256
+ )
257
+ return
258
+
259
+
260
+ @app.cell(hide_code=True)
261
+ def _(mo):
262
+ mo.md(r"""Sometimes the automatically inferred schema is enough for some columns, but we might wish to override the inference of only some columns. We can specify the schema for those columns using `schema_overrides`.""")
263
+ return
264
+
265
+
266
+ @app.cell
267
+ def _(pl):
268
+ pl.DataFrame(
269
+ {
270
+ "Product ID": ["L51172", "M22586", "L51639", "L50250", "M20109"],
271
+ "Type": ["L", "M", "L", "L", "M"],
272
+ "Air temperature": [302.3, 300.8, 302.6, 300, 303.4], # (K)
273
+ "Machine Failure": [False, True, False, False, True]
274
+ },
275
+ schema_overrides={"Air temperature": pl.Float32},
276
+ )
277
+ return
278
+
279
+
280
+
281
+ @app.cell(hide_code=True)
282
+ def _(mo):
283
+ mo.md(
284
+ r"""
285
+ ### References
286
+
287
+ 1. Polars documentation ([link](https://docs.pola.rs/api/python/stable/reference/datatypes.html))
288
+ """
289
+ )
290
+ return
291
+
292
+
293
+ if __name__ == "__main__":
294
+ app.run()